GIF89a;
Direktori : /usr/src/kernels/3.10.0-957.21.3.el7.centos.plus.x86_64/include/linux/ |
Current File : //usr/src/kernels/3.10.0-957.21.3.el7.centos.plus.x86_64/include/linux/tracehook.h |
/* * Tracing hooks * * Copyright (C) 2008-2009 Red Hat, Inc. All rights reserved. * * This copyrighted material is made available to anyone wishing to use, * modify, copy, or redistribute it subject to the terms and conditions * of the GNU General Public License v.2. * * This file defines hook entry points called by core code where * user tracing/debugging support might need to do something. These * entry points are called tracehook_*(). Each hook declared below * has a detailed kerneldoc comment giving the context (locking et * al) from which it is called, and the meaning of its return value. * * Each function here typically has only one call site, so it is ok * to have some nontrivial tracehook_*() inlines. In all cases, the * fast path when no tracing is enabled should be very short. * * The purpose of this file and the tracehook_* layer is to consolidate * the interface that the kernel core and arch code uses to enable any * user debugging or tracing facility (such as ptrace). The interfaces * here are carefully documented so that maintainers of core and arch * code do not need to think about the implementation details of the * tracing facilities. Likewise, maintainers of the tracing code do not * need to understand all the calling core or arch code in detail, just * documented circumstances of each call, such as locking conditions. * * If the calling core code changes so that locking is different, then * it is ok to change the interface documented here. The maintainer of * core code changing should notify the maintainers of the tracing code * that they need to work out the change. * * Some tracehook_*() inlines take arguments that the current tracing * implementations might not necessarily use. These function signatures * are chosen to pass in all the information that is on hand in the * caller and might conceivably be relevant to a tracer, so that the * core code won't have to be updated when tracing adds more features. * If a call site changes so that some of those parameters are no longer * already on hand without extra work, then the tracehook_* interface * can change so there is no make-work burden on the core code. The * maintainer of core code changing should notify the maintainers of the * tracing code that they need to work out the change. */ #ifndef _LINUX_TRACEHOOK_H #define _LINUX_TRACEHOOK_H 1 #include <linux/sched.h> #include <linux/ptrace.h> #include <linux/security.h> #include <linux/task_work.h> struct linux_binprm; /* * ptrace report for syscall entry and exit looks identical. */ static inline int ptrace_report_syscall(struct pt_regs *regs) { int ptrace = current->ptrace; if (!(ptrace & PT_PTRACED)) return 0; ptrace_notify(SIGTRAP | ((ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); /* * this isn't the same as continuing with a signal, but it will do * for normal use. strace only continues with a signal if the * stopping signal is not SIGTRAP. -brl */ if (current->exit_code) { send_sig(current->exit_code, current, 1); current->exit_code = 0; } return fatal_signal_pending(current); } /** * tracehook_report_syscall_entry - task is about to attempt a system call * @regs: user register state of current task * * This will be called if %TIF_SYSCALL_TRACE has been set, when the * current task has just entered the kernel for a system call. * Full user register state is available here. Changing the values * in @regs can affect the system call number and arguments to be tried. * It is safe to block here, preventing the system call from beginning. * * Returns zero normally, or nonzero if the calling arch code should abort * the system call. That must prevent normal entry so no system call is * made. If @task ever returns to user mode after this, its register state * is unspecified, but should be something harmless like an %ENOSYS error * return. It should preserve enough information so that syscall_rollback() * can work (see asm-generic/syscall.h). * * Called without locks, just after entering kernel mode. */ static inline __must_check int tracehook_report_syscall_entry( struct pt_regs *regs) { return ptrace_report_syscall(regs); } /** * tracehook_report_syscall_exit - task has just finished a system call * @regs: user register state of current task * @step: nonzero if simulating single-step or block-step * * This will be called if %TIF_SYSCALL_TRACE has been set, when the * current task has just finished an attempted system call. Full * user register state is available here. It is safe to block here, * preventing signals from being processed. * * If @step is nonzero, this report is also in lieu of the normal * trap that would follow the system call instruction because * user_enable_block_step() or user_enable_single_step() was used. * In this case, %TIF_SYSCALL_TRACE might not be set. * * Called without locks, just before checking for pending signals. */ static inline void tracehook_report_syscall_exit(struct pt_regs *regs, int step) { if (step) { siginfo_t info; user_single_step_siginfo(current, regs, &info); force_sig_info(SIGTRAP, &info, current); return; } ptrace_report_syscall(regs); } /** * tracehook_signal_handler - signal handler setup is complete * @sig: number of signal being delivered * @info: siginfo_t of signal being delivered * @ka: sigaction setting that chose the handler * @regs: user register state * @stepping: nonzero if debugger single-step or block-step in use * * Called by the arch code after a signal handler has been set up. * Register and stack state reflects the user handler about to run. * Signal mask changes have already been made. * * Called without locks, shortly before returning to user mode * (or handling more signals). */ static inline void tracehook_signal_handler(int sig, siginfo_t *info, const struct k_sigaction *ka, struct pt_regs *regs, int stepping) { if (stepping) ptrace_notify(SIGTRAP); } /** * set_notify_resume - cause tracehook_notify_resume() to be called * @task: task that will call tracehook_notify_resume() * * Calling this arranges that @task will call tracehook_notify_resume() * before returning to user mode. If it's already running in user mode, * it will enter the kernel and call tracehook_notify_resume() soon. * If it's blocked, it will not be woken. */ static inline void set_notify_resume(struct task_struct *task) { #ifdef TIF_NOTIFY_RESUME if (!test_and_set_tsk_thread_flag(task, TIF_NOTIFY_RESUME)) kick_process(task); #endif } /** * tracehook_notify_resume - report when about to return to user mode * @regs: user-mode registers of @current task * * This is called when %TIF_NOTIFY_RESUME has been set. Now we are * about to return to user mode, and the user state in @regs can be * inspected or adjusted. The caller in arch code has cleared * %TIF_NOTIFY_RESUME before the call. If the flag gets set again * asynchronously, this will be called again before we return to * user mode. * * Called without locks. */ static inline void tracehook_notify_resume(struct pt_regs *regs) { /* * The caller just cleared TIF_NOTIFY_RESUME. This barrier * pairs with task_work_add()->set_notify_resume() after * hlist_add_head(task->task_works); */ smp_mb__after_clear_bit(); if (unlikely(current->task_works)) task_work_run(); } #endif /* <linux/tracehook.h> */