GIF89a;
Direktori : /usr/src/kernels/3.10.0-957.21.3.el7.centos.plus.x86_64/include/linux/ |
Current File : //usr/src/kernels/3.10.0-957.21.3.el7.centos.plus.x86_64/include/linux/sched.h |
#ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H #include <uapi/linux/sched.h> #include <linux/rh_kabi.h> struct sched_param { int sched_priority; }; #include <asm/param.h> /* for HZ */ #include <linux/capability.h> #include <linux/threads.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/timex.h> #include <linux/jiffies.h> #include <linux/plist.h> #include <linux/rbtree.h> #include <linux/thread_info.h> #include <linux/cpumask.h> #include <linux/errno.h> #include <linux/nodemask.h> #include <linux/mm_types.h> #include <asm/page.h> #include <asm/ptrace.h> #include <linux/cputime.h> #include <linux/smp.h> #include <linux/sem.h> #include <linux/signal.h> #include <linux/compiler.h> #include <linux/completion.h> #include <linux/pid.h> #include <linux/percpu.h> #include <linux/topology.h> #include <linux/proportions.h> #include <linux/seccomp.h> #include <linux/rcupdate.h> #include <linux/rculist.h> #include <linux/rtmutex.h> #include <linux/time.h> #include <linux/param.h> #include <linux/resource.h> #include <linux/timer.h> #include <linux/hrtimer.h> #include <linux/task_io_accounting.h> #include <linux/latencytop.h> #include <linux/cred.h> #include <linux/llist.h> #include <linux/uidgid.h> #include <linux/gfp.h> #include <asm/processor.h> #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ /* * Extended scheduling parameters data structure. * * This is needed because the original struct sched_param can not be * altered without introducing ABI issues with legacy applications * (e.g., in sched_getparam()). * * However, the possibility of specifying more than just a priority for * the tasks may be useful for a wide variety of application fields, e.g., * multimedia, streaming, automation and control, and many others. * * This variant (sched_attr) is meant at describing a so-called * sporadic time-constrained task. In such model a task is specified by: * - the activation period or minimum instance inter-arrival time; * - the maximum (or average, depending on the actual scheduling * discipline) computation time of all instances, a.k.a. runtime; * - the deadline (relative to the actual activation time) of each * instance. * Very briefly, a periodic (sporadic) task asks for the execution of * some specific computation --which is typically called an instance-- * (at most) every period. Moreover, each instance typically lasts no more * than the runtime and must be completed by time instant t equal to * the instance activation time + the deadline. * * This is reflected by the actual fields of the sched_attr structure: * * @size size of the structure, for fwd/bwd compat. * * @sched_policy task's scheduling policy * @sched_flags for customizing the scheduler behaviour * @sched_nice task's nice value (SCHED_NORMAL/BATCH) * @sched_priority task's static priority (SCHED_FIFO/RR) * @sched_deadline representative of the task's deadline * @sched_runtime representative of the task's runtime * @sched_period representative of the task's period * * Given this task model, there are a multiplicity of scheduling algorithms * and policies, that can be used to ensure all the tasks will make their * timing constraints. * * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the * only user of this new interface. More information about the algorithm * available in the scheduling class file or in Documentation/. */ struct sched_attr { u32 size; u32 sched_policy; u64 sched_flags; /* SCHED_NORMAL, SCHED_BATCH */ s32 sched_nice; /* SCHED_FIFO, SCHED_RR */ u32 sched_priority; /* SCHED_DEADLINE */ u64 sched_runtime; u64 sched_deadline; u64 sched_period; }; struct exec_domain; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct filename; /* * List of flags we want to share for kernel threads, * if only because they are not used by them anyway. */ #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) /* * These are the constant used to fake the fixed-point load-average * counting. Some notes: * - 11 bit fractions expand to 22 bits by the multiplies: this gives * a load-average precision of 10 bits integer + 11 bits fractional * - if you want to count load-averages more often, you need more * precision, or rounding will get you. With 2-second counting freq, * the EXP_n values would be 1981, 2034 and 2043 if still using only * 11 bit fractions. */ extern unsigned long avenrun[]; /* Load averages */ extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); #define FSHIFT 11 /* nr of bits of precision */ #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ #define EXP_5 2014 /* 1/exp(5sec/5min) */ #define EXP_15 2037 /* 1/exp(5sec/15min) */ #define CALC_LOAD(load,exp,n) \ load *= exp; \ load += n*(FIXED_1-exp); \ load >>= FSHIFT; extern unsigned long total_forks; extern int nr_threads; DECLARE_PER_CPU(unsigned long, process_counts); extern int nr_processes(void); extern unsigned long nr_running(void); extern bool single_task_running(void); extern unsigned long nr_iowait(void); extern unsigned long nr_iowait_cpu(int cpu); extern unsigned long this_cpu_load(void); extern void calc_global_load(unsigned long ticks); extern void update_cpu_load_nohz(void); extern unsigned long get_parent_ip(unsigned long addr); extern void dump_cpu_task(int cpu); struct seq_file; struct cfs_rq; struct task_group; #ifdef CONFIG_SCHED_DEBUG extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); extern void proc_sched_set_task(struct task_struct *p); extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); #endif /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define __TASK_STOPPED 4 #define __TASK_TRACED 8 /* in tsk->exit_state */ #define EXIT_ZOMBIE 16 #define EXIT_DEAD 32 /* in tsk->state again */ #define TASK_DEAD 64 #define TASK_WAKEKILL 128 #define TASK_WAKING 256 #define TASK_PARKED 512 #define TASK_STATE_MAX 1024 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" extern char ___assert_task_state[1 - 2*!!( sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; /* Convenience macros for the sake of set_task_state */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) /* Convenience macros for the sake of wake_up */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) /* get_task_state() */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED) #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) #define task_is_dead(task) ((task)->exit_state != 0) #define task_is_stopped_or_traced(task) \ ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) #define task_contributes_to_load(task) \ ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ (task->flags & PF_FROZEN) == 0) #define __set_task_state(tsk, state_value) \ do { (tsk)->state = (state_value); } while (0) #define set_task_state(tsk, state_value) \ set_mb((tsk)->state, (state_value)) /* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * set_current_state(TASK_UNINTERRUPTIBLE); * if (do_i_need_to_sleep()) * schedule(); * * If the caller does not need such serialisation then use __set_current_state() */ #define __set_current_state(state_value) \ do { current->state = (state_value); } while (0) #define set_current_state(state_value) \ set_mb(current->state, (state_value)) /* Task command name length */ #define TASK_COMM_LEN 16 #include <linux/spinlock.h> /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern qrwlock_t tasklist_lock; extern spinlock_t mmlist_lock; extern void tasklist_write_lock_irq(void); extern void tasklist_read_lock(void); struct task_struct; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern void sched_init(void); extern void sched_init_smp(void); extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle_bootup_task(struct task_struct *idle); extern cpumask_var_t cpu_isolated_map; extern int runqueue_is_locked(int cpu); #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) extern void nohz_balance_enter_idle(int cpu); extern void set_cpu_sd_state_idle(void); extern int get_nohz_timer_target(void); #else static inline void nohz_balance_enter_idle(int cpu) { } static inline void set_cpu_sd_state_idle(void) { } #endif /* * Only dump TASK_* tasks. (0 for all tasks) */ extern void show_state_filter(unsigned long state_filter); static inline void show_state(void) { show_state_filter(0); } extern void show_regs(struct pt_regs *); /* * TASK is a pointer to the task whose backtrace we want to see (or NULL for current * task), SP is the stack pointer of the first frame that should be shown in the back * trace (or NULL if the entire call-chain of the task should be shown). */ extern void show_stack(struct task_struct *task, unsigned long *sp); void io_schedule(void); long io_schedule_timeout(long timeout); extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(void); extern void sched_show_task(struct task_struct *p); #ifdef CONFIG_LOCKUP_DETECTOR extern void touch_softlockup_watchdog_sched(void); extern void touch_softlockup_watchdog(void); extern void touch_softlockup_watchdog_sync(void); extern void touch_all_softlockup_watchdogs(void); extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); extern unsigned int softlockup_panic; extern unsigned int hardlockup_panic; void lockup_detector_init(void); #else static inline void touch_softlockup_watchdog_sched(void) { } static inline void touch_softlockup_watchdog(void) { } static inline void touch_softlockup_watchdog_sync(void) { } static inline void touch_all_softlockup_watchdogs(void) { } static inline void lockup_detector_init(void) { } #endif #ifdef CONFIG_DETECT_HUNG_TASK void reset_hung_task_detector(void); #else static inline void reset_hung_task_detector(void) { } #endif /* Attach to any functions which should be ignored in wchan output. */ #define __sched __attribute__((__section__(".sched.text"))) /* Linker adds these: start and end of __sched functions */ extern char __sched_text_start[], __sched_text_end[]; /* Is this address in the __sched functions? */ extern int in_sched_functions(unsigned long addr); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern signed long schedule_timeout(signed long timeout); extern signed long schedule_timeout_interruptible(signed long timeout); extern signed long schedule_timeout_killable(signed long timeout); extern signed long schedule_timeout_uninterruptible(signed long timeout); asmlinkage void schedule(void); extern void schedule_preempt_disabled(void); struct nsproxy; struct user_namespace; #ifdef CONFIG_MMU extern void arch_pick_mmap_layout(struct mm_struct *mm); extern unsigned long arch_get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); extern unsigned long arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags); extern void arch_unmap_area(struct mm_struct *, unsigned long); extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); #else static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} #endif extern void set_dumpable(struct mm_struct *mm, int value); extern int get_dumpable(struct mm_struct *mm); #define SUID_DUMP_DISABLE 0 /* No setuid dumping */ #define SUID_DUMP_USER 1 /* Dump as user of process */ #define SUID_DUMP_ROOT 2 /* Dump as root */ /* mm flags */ /* dumpable bits */ #define MMF_DUMPABLE 0 /* core dump is permitted */ #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ #define MMF_DUMPABLE_BITS 2 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) /* coredump filter bits */ #define MMF_DUMP_ANON_PRIVATE 2 #define MMF_DUMP_ANON_SHARED 3 #define MMF_DUMP_MAPPED_PRIVATE 4 #define MMF_DUMP_MAPPED_SHARED 5 #define MMF_DUMP_ELF_HEADERS 6 #define MMF_DUMP_HUGETLB_PRIVATE 7 #define MMF_DUMP_HUGETLB_SHARED 8 #define MMF_DUMP_DAX_PRIVATE 9 #define MMF_DUMP_DAX_SHARED 10 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS #define MMF_DUMP_FILTER_BITS 9 #define MMF_DUMP_FILTER_MASK \ (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) #define MMF_DUMP_FILTER_DEFAULT \ ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) #else # define MMF_DUMP_MASK_DEFAULT_ELF 0 #endif /* leave room for more dump flags */ #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ #define MMF_HAS_UPROBES 19 /* has uprobes */ #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) struct sighand_struct { atomic_t count; struct k_sigaction action[_NSIG]; spinlock_t siglock; wait_queue_head_t signalfd_wqh; }; struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; cputime_t ac_utime, ac_stime; unsigned long ac_minflt, ac_majflt; }; struct cpu_itimer { cputime_t expires; cputime_t incr; u32 error; u32 incr_error; }; /** * struct prev_cputime - snaphsot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */ struct prev_cputime { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE cputime_t utime; cputime_t stime; raw_spinlock_t lock; #endif }; /* RHEL7 note: Do not use. Only here to preserve kABI */ struct cputime { cputime_t utime; cputime_t stime; }; static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } /** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in &cputime_t units * @stime: time spent in kernel mode, in &cputime_t units * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * * This structure groups together three kinds of CPU time that are tracked for * threads and thread groups. Most things considering CPU time want to group * these counts together and treat all three of them in parallel. */ struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; }; /* Alternate field names when used to cache expirations. */ #define virt_exp utime #define prof_exp stime #define sched_exp sum_exec_runtime #define INIT_CPUTIME \ (struct task_cputime) { \ .utime = 0, \ .stime = 0, \ .sum_exec_runtime = 0, \ } /* * Disable preemption until the scheduler is running. * Reset by start_kernel()->sched_init()->init_idle(). * * We include PREEMPT_ACTIVE to avoid cond_resched() from working * before the scheduler is active -- see should_resched(). */ #define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) /** * struct thread_group_cputimer - thread group interval timer counts * @cputime: thread group interval timers. * @running: non-zero when there are timers running and * @cputime receives updates. * @lock: lock for fields in this struct. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime cputime; int running; raw_spinlock_t lock; }; #include <linux/rwsem.h> struct autogroup; /* * NOTE! "signal_struct" does not have its own * locking, because a shared signal_struct always * implies a shared sighand_struct, so locking * sighand_struct is always a proper superset of * the locking of signal_struct. */ struct signal_struct { atomic_t sigcnt; atomic_t live; int nr_threads; struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ /* current thread group signal load-balancing target: */ struct task_struct *curr_target; /* shared signal handling: */ struct sigpending shared_pending; /* thread group exit support */ int group_exit_code; /* overloaded: * - notify group_exit_task when ->count is equal to notify_count * - everyone except group_exit_task is stopped during signal delivery * of fatal signals, group_exit_task processes the signal. */ int notify_count; struct task_struct *group_exit_task; /* thread group stop support, overloads group_exit_code too */ int group_stop_count; unsigned int flags; /* see SIGNAL_* flags below */ /* * PR_SET_CHILD_SUBREAPER marks a process, like a service * manager, to re-parent orphan (double-forking) child processes * to this process instead of 'init'. The service manager is * able to receive SIGCHLD signals and is able to investigate * the process until it calls wait(). All children of this * process will inherit a flag if they should look for a * child_subreaper process at exit. */ unsigned int is_child_subreaper:1; unsigned int has_child_subreaper:1; /* POSIX.1b Interval Timers */ int posix_timer_id; struct list_head posix_timers; /* ITIMER_REAL timer for the process */ struct hrtimer real_timer; struct pid *leader_pid; ktime_t it_real_incr; /* * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these * values are defined to 0 and 1 respectively */ struct cpu_itimer it[2]; /* * Thread group totals for process CPU timers. * See thread_group_cputimer(), et al, for details. */ struct thread_group_cputimer cputimer; /* Earliest-expiration cache. */ struct task_cputime cputime_expires; struct list_head cpu_timers[3]; struct pid *tty_old_pgrp; /* boolean value for session group leader */ int leader; struct tty_struct *tty; /* NULL if no tty */ #ifdef CONFIG_SCHED_AUTOGROUP struct autogroup *autogroup; #endif /* * Cumulative resource counters for dead threads in the group, * and for reaped dead child processes forked by this group. * Live threads maintain their own counters and add to these * in __exit_signal, except for the group leader. */ cputime_t utime, stime, cutime, cstime; cputime_t gtime; cputime_t cgtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE RH_KABI_DEPRECATE(struct cputime, prev_cputime) #endif unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; unsigned long inblock, oublock, cinblock, coublock; unsigned long maxrss, cmaxrss; struct task_io_accounting ioac; /* * Cumulative ns of schedule CPU time fo dead threads in the * group, not including a zombie group leader, (This only differs * from jiffies_to_ns(utime + stime) if sched_clock uses something * other than jiffies.) */ unsigned long long sum_sched_runtime; /* * We don't bother to synchronize most readers of this at all, * because there is no reader checking a limit that actually needs * to get both rlim_cur and rlim_max atomically, and either one * alone is a single word that can safely be read normally. * getrlimit/setrlimit use task_lock(current->group_leader) to * protect this instead of the siglock, because they really * have no need to disable irqs. */ struct rlimit rlim[RLIM_NLIMITS]; #ifdef CONFIG_BSD_PROCESS_ACCT struct pacct_struct pacct; /* per-process accounting information */ #endif #ifdef CONFIG_TASKSTATS struct taskstats *stats; #endif #ifdef CONFIG_AUDIT unsigned audit_tty; unsigned audit_tty_log_passwd; struct tty_audit_buf *tty_audit_buf; #endif #ifdef CONFIG_CGROUPS /* * group_rwsem prevents new tasks from entering the threadgroup and * member tasks from exiting,a more specifically, setting of * PF_EXITING. fork and exit paths are protected with this rwsem * using threadgroup_change_begin/end(). Users which require * threadgroup to remain stable should use threadgroup_[un]lock() * which also takes care of exec path. Currently, cgroup is the * only user. */ struct rw_semaphore group_rwsem; #endif oom_flags_t oom_flags; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ struct mutex cred_guard_mutex; /* guard against foreign influences on * credential calculations * (notably. ptrace) */ /* reserved for Red Hat */ RH_KABI_USE(1, seqlock_t stats_lock) RH_KABI_RESERVE(2) RH_KABI_RESERVE(3) RH_KABI_RESERVE(4) #ifndef __GENKSYMS__ struct prev_cputime prev_cputime; #endif }; /* * Bits in flags field of signal_struct. */ #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ /* * Pending notifications to parent. */ #define SIGNAL_CLD_STOPPED 0x00000010 #define SIGNAL_CLD_CONTINUED 0x00000020 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ /* If true, all threads except ->group_exit_task have pending SIGKILL */ static inline int signal_group_exit(const struct signal_struct *sig) { return (sig->flags & SIGNAL_GROUP_EXIT) || (sig->group_exit_task != NULL); } /* * Some day this will be a full-fledged user tracking system.. */ struct user_struct { atomic_t __count; /* reference count */ atomic_t processes; /* How many processes does this user have? */ atomic_t files; /* How many open files does this user have? */ atomic_t sigpending; /* How many pending signals does this user have? */ #ifdef CONFIG_INOTIFY_USER atomic_t inotify_watches; /* How many inotify watches does this user have? */ atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ #endif #ifdef CONFIG_FANOTIFY atomic_t fanotify_listeners; #endif #ifdef CONFIG_EPOLL atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ #endif #ifdef CONFIG_POSIX_MQUEUE /* protected by mq_lock */ unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ #endif unsigned long locked_shm; /* How many pages of mlocked shm ? */ #ifdef CONFIG_KEYS struct key *uid_keyring; /* UID specific keyring */ struct key *session_keyring; /* UID's default session keyring */ #endif /* Hash table maintenance information */ struct hlist_node uidhash_node; kuid_t uid; #ifdef CONFIG_PERF_EVENTS atomic_long_t locked_vm; #endif RH_KABI_EXTEND(unsigned long unix_inflight) /* How many files in flight in unix sockets */ RH_KABI_EXTEND(atomic_long_t pipe_bufs) /* how many pages are allocated in pipe buffers */ }; extern int uids_sysfs_init(void); extern struct user_struct *find_user(kuid_t); extern struct user_struct root_user; #define INIT_USER (&root_user) struct backing_dev_info; struct reclaim_state; #ifdef CONFIG_SCHED_INFO struct sched_info { /* cumulative counters */ unsigned long pcount; /* # of times run on this cpu */ unsigned long long run_delay; /* time spent waiting on a runqueue */ /* timestamps */ unsigned long long last_arrival,/* when we last ran on a cpu */ last_queued; /* when we were last queued to run */ }; #endif /* CONFIG_SCHED_INFO */ #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info { spinlock_t lock; unsigned int flags; /* Private per-task flags */ /* For each stat XXX, add following, aligned appropriately * * struct timespec XXX_start, XXX_end; * u64 XXX_delay; * u32 XXX_count; * * Atomicity of updates to XXX_delay, XXX_count protected by * single lock above (split into XXX_lock if contention is an issue). */ /* * XXX_count is incremented on every XXX operation, the delay * associated with the operation is added to XXX_delay. * XXX_delay contains the accumulated delay time in nanoseconds. */ struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ u64 blkio_delay; /* wait for sync block io completion */ u64 swapin_delay; /* wait for swapin block io completion */ u32 blkio_count; /* total count of the number of sync block */ /* io operations performed */ u32 swapin_count; /* total count of the number of swapin block */ /* io operations performed */ struct timespec freepages_start, freepages_end; u64 freepages_delay; /* wait for memory reclaim */ u32 freepages_count; /* total count of memory reclaim */ }; #endif /* CONFIG_TASK_DELAY_ACCT */ static inline int sched_info_on(void) { #ifdef CONFIG_SCHEDSTATS return 1; #elif defined(CONFIG_TASK_DELAY_ACCT) extern int delayacct_on; return delayacct_on; #else return 0; #endif } #ifdef CONFIG_SCHEDSTATS void force_schedstat_enabled(void); #endif enum cpu_idle_type { CPU_IDLE, CPU_NOT_IDLE, CPU_NEWLY_IDLE, CPU_MAX_IDLE_TYPES }; /* * Increase resolution of cpu_power calculations */ #define SCHED_POWER_SHIFT 10 #define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) /* * Wake-queues are lists of tasks with a pending wakeup, whose * callers have already marked the task as woken internally, * and can thus carry on. A common use case is being able to * do the wakeups once the corresponding user lock as been * released. * * We hold reference to each task in the list across the wakeup, * thus guaranteeing that the memory is still valid by the time * the actual wakeups are performed in wake_up_q(). * * One per task suffices, because there's never a need for a task to be * in two wake queues simultaneously; it is forbidden to abandon a task * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is * already in a wake queue, the wakeup will happen soon and the second * waker can just skip it. * * The WAKE_Q macro declares and initializes the list head. * wake_up_q() does NOT reinitialize the list; it's expected to be * called near the end of a function, where the fact that the queue is * not used again will be easy to see by inspection. * * NOTE that this can cause spurious wakeups. schedule() callers * must ensure the call is done inside a loop, confirming that the * wakeup condition has in fact occurred. * * NOTE that there is no guarantee the wakeup will happen any later than the * wake_q_add() location. Therefore task must be ready to be woken at the * location of the wake_q_add(). */ struct wake_q_node { struct wake_q_node *next; }; struct wake_q_head { struct wake_q_node *first; struct wake_q_node **lastp; }; #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) #define WAKE_Q(name) \ struct wake_q_head name = { WAKE_Q_TAIL, &name.first } extern void wake_q_add(struct wake_q_head *head, struct task_struct *task); extern void wake_up_q(struct wake_q_head *head); /* * sched-domains (multiprocessor balancing) declarations: */ #ifdef CONFIG_SMP #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ #define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ #define SD_NUMA 0x4000 /* cross-node balancing */ extern int __weak arch_sd_sibiling_asym_packing(void); #ifdef CONFIG_SCHED_SMT static inline int cpu_smt_flags(void) { return SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES; } #endif #ifdef CONFIG_SCHED_MC static inline int cpu_core_flags(void) { return SD_SHARE_PKG_RESOURCES; } #endif #ifdef CONFIG_NUMA static inline int cpu_numa_flags(void) { return SD_NUMA; } #endif extern int arch_asym_cpu_priority(int cpu); struct sched_domain_attr { int relax_domain_level; }; #define SD_ATTR_INIT (struct sched_domain_attr) { \ .relax_domain_level = -1, \ } extern int sched_domain_level_max; struct sched_group; struct sched_domain { /* These fields must be setup */ struct sched_domain *parent; /* top domain must be null terminated */ struct sched_domain *child; /* bottom domain must be null terminated */ struct sched_group *groups; /* the balancing groups of the domain */ unsigned long min_interval; /* Minimum balance interval ms */ unsigned long max_interval; /* Maximum balance interval ms */ unsigned int busy_factor; /* less balancing by factor if busy */ unsigned int imbalance_pct; /* No balance until over watermark */ unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ unsigned int busy_idx; unsigned int idle_idx; unsigned int newidle_idx; unsigned int wake_idx; unsigned int forkexec_idx; unsigned int smt_gain; int nohz_idle; /* NOHZ IDLE status */ int flags; /* See SD_* */ int level; /* Runtime fields. */ unsigned long last_balance; /* init to jiffies. units in jiffies */ unsigned int balance_interval; /* initialise to 1. units in ms. */ unsigned int nr_balance_failed; /* initialise to 0 */ u64 last_update; /* idle_balance() stats */ u64 max_newidle_lb_cost; unsigned long next_decay_max_lb_cost; #ifdef CONFIG_SCHED_DEBUG char *name; #endif union { void *private; /* used during construction */ struct rcu_head rcu; /* used during destruction */ }; unsigned int span_weight; #ifndef __GENKSYMS__ /* CONFIG_SCHEDSTATS */ /* load_balance() stats */ unsigned int lb_count[CPU_MAX_IDLE_TYPES]; unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; /* Active load balancing */ unsigned int alb_count; unsigned int alb_failed; unsigned int alb_pushed; /* SD_BALANCE_EXEC stats */ unsigned int sbe_count; unsigned int sbe_balanced; unsigned int sbe_pushed; /* SD_BALANCE_FORK stats */ unsigned int sbf_count; unsigned int sbf_balanced; unsigned int sbf_pushed; /* try_to_wake_up() stats */ unsigned int ttwu_wake_remote; unsigned int ttwu_move_affine; unsigned int ttwu_move_balance; #endif /* __GENKSYMS__ */ /* * Span of all CPUs in this domain. * * NOTE: this field is variable length. (Allocated dynamically * by attaching extra space to the end of the structure, * depending on how many CPUs the kernel has booted up with) */ unsigned long span[0]; }; static inline struct cpumask *sched_domain_span(struct sched_domain *sd) { return to_cpumask(sd->span); } extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new); /* Allocate an array of sched domains, for partition_sched_domains(). */ cpumask_var_t *alloc_sched_domains(unsigned int ndoms); void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); bool cpus_share_cache(int this_cpu, int that_cpu); typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); typedef int (*sched_domain_flags_f)(void); #define SDTL_OVERLAP 0x01 struct sd_data { struct sched_domain **__percpu sd; struct sched_group **__percpu sg; struct sched_group_power **__percpu sgp; }; struct sched_domain_topology_level { sched_domain_mask_f mask; sched_domain_flags_f sd_flags; int flags; int numa_level; struct sd_data data; #ifdef CONFIG_SCHED_DEBUG char *name; #endif }; extern struct sched_domain_topology_level *sched_domain_topology; extern void set_sched_topology(struct sched_domain_topology_level *tl); #ifdef CONFIG_SCHED_DEBUG # define SD_INIT_NAME(type) .name = #type #else # define SD_INIT_NAME(type) #endif #else /* CONFIG_SMP */ struct sched_domain_attr; static inline void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], struct sched_domain_attr *dattr_new) { } static inline bool cpus_share_cache(int this_cpu, int that_cpu) { return true; } #endif /* !CONFIG_SMP */ struct io_context; /* See blkdev.h */ #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK extern void prefetch_stack(struct task_struct *t); #else static inline void prefetch_stack(struct task_struct *t) { } #endif struct audit_context; /* See audit.c */ struct mempolicy; struct pipe_inode_info; struct uts_namespace; struct load_weight { /* inv_weight is u32 upstream, unsigned long in RHEL7 because kABI */ unsigned long weight, inv_weight; }; struct sched_avg { /* * These sums represent an infinite geometric series and so are bound * above by 1024/(1-y). Thus we only need a u32 to store them for for all * choices of y < 1-2^(-32)*1024. */ u32 runnable_avg_sum, runnable_avg_period; u64 last_runnable_update; s64 decay_count; unsigned long load_avg_contrib; }; #ifdef CONFIG_SCHEDSTATS struct sched_statistics { u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; }; #endif struct sched_entity { struct load_weight load; /* for load-balancing */ struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; #ifdef CONFIG_FAIR_GROUP_SCHED struct sched_entity *parent; /* rq on which this entity is (to be) queued: */ struct cfs_rq *cfs_rq; /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; #endif /* * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be * removed when useful for applications beyond shares distribution (e.g. * load-balance). */ #if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) /* Per-entity load-tracking */ struct sched_avg avg; #endif RH_KABI_USE(1, struct sched_statistics *statistics) /* reserved for Red Hat */ RH_KABI_RESERVE(2) RH_KABI_RESERVE(3) RH_KABI_RESERVE(4) }; struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; struct sched_rt_entity *back; #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity *parent; /* rq on which this entity is (to be) queued: */ struct rt_rq *rt_rq; /* rq "owned" by this entity/group: */ struct rt_rq *my_q; #endif }; struct sched_dl_entity { struct rb_node rb_node; /* * Original scheduling parameters. Copied here from sched_attr * during sched_setscheduler2(), they will remain the same until * the next sched_setscheduler2(). */ u64 dl_runtime; /* maximum runtime for each instance */ u64 dl_deadline; /* relative deadline of each instance */ u64 dl_period; /* separation of two instances (period) */ u64 dl_bw; /* dl_runtime / dl_period */ u64 dl_density; /* dl_runtime / dl_deadline */ /* * Actual scheduling parameters. Initialized with the values above, * they are continously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */ s64 runtime; /* remaining runtime for this instance */ u64 deadline; /* absolute deadline for this instance */ unsigned int flags; /* specifying the scheduler behaviour */ /* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_boosted tells if we are boosted due to DI. If so we are * outside bandwidth enforcement mechanism (but only until we * exit the critical section); * * @dl_yielded tells if task gave up the cpu before consuming * all its available runtime during the last job. * * @dl_non_contending tells if the task is inactive while still * contributing to the active utilization. In other words, it * indicates if the inactive timer has been armed and its handler * has not been executed yet. This flag is useful to avoid race * conditions between the inactive timer handler and the wakeup * code. */ int dl_throttled, dl_boosted, dl_yielded, dl_non_contending; /* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */ struct hrtimer dl_timer; /* * Inactive timer, responsible for decreasing the active utilization * at the "0-lag time". When a -deadline task blocks, it contributes * to GRUB's active utilization until the "0-lag time", hence a * timer is needed to decrease the active utilization at the correct * time. */ struct hrtimer inactive_timer; }; struct rcu_node; enum perf_event_task_context { perf_invalid_context = -1, perf_hw_context = 0, perf_sw_context, perf_nr_task_contexts, }; /* Track pages that require TLB flushes */ struct tlbflush_unmap_batch { /* * Each bit set is a CPU that potentially has a TLB entry for one of * the PFNs being flushed. See set_tlb_ubc_flush_pending(). */ struct cpumask cpumask; /* True if any bit in cpumask is set */ bool flush_required; /* * If true then the PTE was dirty when unmapped. The entry must be * flushed before IO is initiated or a stale TLB entry potentially * allows an update without redirtying the page. */ bool writable; }; struct task_struct { volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; atomic_t usage; unsigned int flags; /* per process flags, defined below */ unsigned int ptrace; #ifdef CONFIG_SMP struct llist_node wake_entry; int on_cpu; struct task_struct *last_wakee; unsigned long wakee_flips; unsigned long wakee_flip_decay_ts; int wake_cpu; #endif int on_rq; int prio, static_prio, normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #elif defined(CONFIG_S390) RH_KABI_DEPRECATE(struct hlist_head, preempt_notifiers) #endif /* * fpu_counter contains the number of consecutive context switches * that the FPU is used. If this is over a threshold, the lazy fpu * saving becomes unlazy to save the trap. This is an unsigned char * so that after 256 times the counter wraps and the behavior turns * lazy again; this to deal with bursty apps that only use FPU for * a short time */ unsigned char fpu_counter; #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; int nr_cpus_allowed; cpumask_t cpus_allowed; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; char rcu_read_unlock_special; struct list_head rcu_node_entry; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TREE_PREEMPT_RCU struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ #ifdef CONFIG_RCU_BOOST struct rt_mutex *rcu_boost_mutex; #endif /* #ifdef CONFIG_RCU_BOOST */ #ifdef CONFIG_SCHED_INFO struct sched_info sched_info; #endif struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; #endif struct mm_struct *mm, *active_mm; #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif #if defined(SPLIT_RSS_COUNTING) struct task_rss_stat rss_stat; #endif /* task state */ int exit_state; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ unsigned int jobctl; /* JOBCTL_*, siglock protected */ /* Used for emulating ABI behavior of previous Linux versions */ unsigned int personality; unsigned did_exec:1; unsigned in_execve:1; /* Tell the LSMs that the process is doing an * execve */ unsigned in_iowait:1; /* task may not gain privileges */ unsigned no_new_privs:1; /* Revert to default priority/policy when forking */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; RH_KABI_FILL_HOLE(unsigned sched_remote_wakeup:1) pid_t pid; pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR /* Canary value for the -fstack-protector gcc feature */ unsigned long stack_canary; #endif /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ struct task_struct __rcu *real_parent; /* real parent process */ struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ /* * children/sibling forms the list of my natural children */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* * ptraced is the list of tasks this task is using ptrace on. * This includes both natural children and PTRACE_ATTACH targets. * p->ptrace_entry is p's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; struct list_head thread_group; struct list_head thread_node; struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ cputime_t utime, stime, utimescaled, stimescaled; cputime_t gtime; #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE RH_KABI_DEPRECATE(struct cputime, prev_cputime) #endif #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN seqlock_t vtime_seqlock; unsigned long long vtime_snap; enum { VTIME_SLEEPING = 0, VTIME_USER, VTIME_SYS, } vtime_snap_whence; #endif unsigned long nvcsw, nivcsw; /* context switch counts */ struct timespec start_time; /* monotonic time */ struct timespec real_start_time; /* boot based time */ /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt; struct task_cputime cputime_expires; struct list_head cpu_timers[3]; /* process credentials */ const struct cred __rcu *real_cred; /* objective and real subjective task * credentials (COW) */ const struct cred __rcu *cred; /* effective (overridable) subjective task * credentials (COW) */ char comm[TASK_COMM_LEN]; /* executable name excluding path - access with [gs]et_task_comm (which lock it with task_lock()) - initialized normally by setup_new_exec */ /* file system info */ int link_count, total_link_count; #ifdef CONFIG_SYSVIPC /* ipc stuff */ struct sysv_sem sysvsem; #endif /* CPU-specific state of this task */ struct thread_struct thread; /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespaces */ struct nsproxy *nsproxy; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; int (*notifier)(void *priv); void *notifier_data; sigset_t *notifier_mask; struct callback_head *task_works; struct audit_context *audit_context; #ifdef CONFIG_AUDITSYSCALL kuid_t loginuid; unsigned int sessionid; #endif struct seccomp seccomp; /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, * mempolicy */ spinlock_t alloc_lock; /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ #ifndef __GENKSYMS__ struct rb_root pi_waiters; struct rb_node *pi_waiters_leftmost; #else struct plist_head pi_waiters; #endif /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* mutex deadlock detection */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_TRACE_IRQFLAGS unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; gfp_t lockdep_reclaim_gfp; #endif /* journalling filesystem info */ void *journal_info; /* stacked block device info */ struct bio_list *bio_list; #ifdef CONFIG_BLOCK /* stack plugging */ struct blk_plug *plug; #endif /* VM state */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ struct task_io_accounting ioac; #if defined(CONFIG_TASK_XACCT) u64 acct_rss_mem1; /* accumulated rss usage */ u64 acct_vm_mem1; /* accumulated virtual memory usage */ cputime_t acct_timexpd; /* stime + utime since last update */ #endif #ifdef CONFIG_CPUSETS nodemask_t mems_allowed; /* Protected by alloc_lock */ seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock */ struct list_head cg_list; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_NUMA struct mempolicy *mempolicy; /* Protected by alloc_lock */ short il_next; short pref_node_fork; #endif #ifdef CONFIG_NUMA_BALANCING int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; u64 node_stamp; /* migration stamp */ u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; struct list_head numa_entry; struct numa_group *numa_group; /* * Exponential decaying average of faults on a per-node basis. * Scheduling placement decisions are made based on the these counts. * The values remain static for the duration of a PTE scan */ unsigned long *numa_faults_memory; unsigned long total_numa_faults; /* * numa_faults_buffer records faults per node during the current * scan window. When the scan completes, the counts in * numa_faults_memory decay and these values are copied. */ unsigned long *numa_faults_buffer_memory; /* * Track the nodes the process was running on when a NUMA hinting * fault was incurred. */ unsigned long *numa_faults_cpu; unsigned long *numa_faults_buffer_cpu; /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local. The task scan period is adapted * based on the locality of the faults with different weights * depending on whether they were shared or private faults */ unsigned long numa_faults_locality[2]; unsigned long numa_pages_migrated; #endif /* CONFIG_NUMA_BALANCING */ struct rcu_head rcu; /* * cache last used pipe for splice */ struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif /* * when (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for some dirty throttling pause */ int nr_dirtied; int nr_dirtied_pause; unsigned long dirty_paused_when; /* start of a write-and-pause period */ #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ unsigned long timer_slack_ns; unsigned long default_timer_slack_ns; #if defined(CONFIG_FUNCTION_GRAPH_TRACER) && defined(CONFIG_X86_64) /* Index of current stored address in ret_stack */ int curr_ret_stack; /* Stack of return addresses for return function tracing */ struct ftrace_ret_stack *ret_stack; /* time stamp for last schedule */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun. */ atomic_t trace_overrun; /* Pause for the tracing */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* state flags for use by tracers */ unsigned long trace; /* bitmask and counter of trace recursion */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ struct memcg_batch_info { int do_batch; /* incremented when batch uncharge started */ struct mem_cgroup *memcg; /* target memcg of uncharge */ unsigned long nr_pages; /* uncharged usage */ unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ } memcg_batch; unsigned int memcg_kmem_skip_account; #endif #ifdef CONFIG_HAVE_HW_BREAKPOINT atomic_t ptrace_bp_refcnt; #endif #if !defined(CONFIG_S390) && defined(CONFIG_UPROBES) struct uprobe_task *utask; #endif #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) unsigned int sequential_io; unsigned int sequential_io_avg; #endif /* reserved for Red Hat */ #ifdef CONFIG_DETECT_HUNG_TASK RH_KABI_USE(1, unsigned long last_switch_count) #else RH_KABI_RESERVE(1) #endif RH_KABI_USE(2, unsigned long atomic_flags) #if defined(CONFIG_S390) && defined(CONFIG_UPROBES) RH_KABI_USE(3, struct uprobe_task *utask) #else RH_KABI_RESERVE(3) #endif /* This would be in rss_stat[MM_SHMEMPAGES] if not for kABI */ RH_KABI_USE(4, int mm_shmempages) #ifdef CONFIG_INTEL_RDT RH_KABI_USE(5, u32 closid) #else RH_KABI_RESERVE(5) #endif #ifdef CONFIG_LIVEPATCH RH_KABI_USE(6, int patch_state) #else RH_KABI_RESERVE(6) #endif #ifdef CONFIG_INTEL_RDT RH_KABI_USE(7, u32 rmid) #else RH_KABI_RESERVE(7) #endif RH_KABI_RESERVE(8) #ifndef __GENKSYMS__ #ifdef CONFIG_MEMCG struct memcg_oom_info { struct mem_cgroup *memcg; gfp_t gfp_mask; int order; unsigned int may_oom:1; } memcg_oom; #endif #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH struct tlbflush_unmap_batch tlb_ubc; #endif #if defined(CONFIG_FUNCTION_GRAPH_TRACER) && !defined(CONFIG_X86_64) /* Index of current stored address in ret_stack */ int curr_ret_stack; /* Stack of return addresses for return function tracing */ struct ftrace_ret_stack *ret_stack; /* time stamp for last schedule */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun. */ atomic_t trace_overrun; /* Pause for the tracing */ atomic_t tracing_graph_pause; #endif struct sched_dl_entity dl; #ifdef CONFIG_SMP struct rb_node pushable_dl_tasks; #endif struct sched_statistics statistics; struct wake_q_node wake_q; struct prev_cputime prev_cputime; #endif /* __GENKSYMS__ */ }; /* Future-safe accessor for struct task_struct's cpus_allowed. */ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) #define TNF_MIGRATED 0x01 #define TNF_NO_GROUP 0x02 #define TNF_SHARED 0x04 #define TNF_FAULT_LOCAL 0x08 #ifdef CONFIG_NUMA_BALANCING extern void task_numa_fault(int last_node, int node, int pages, int flags); extern pid_t task_numa_group_id(struct task_struct *p); extern void set_numabalancing_state(bool enabled); extern void task_numa_free(struct task_struct *p); extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, int src_nid, int dst_cpu); #else static inline void task_numa_fault(int last_node, int node, int pages, int flags) { } static inline pid_t task_numa_group_id(struct task_struct *p) { return 0; } static inline void set_numabalancing_state(bool enabled) { } static inline void task_numa_free(struct task_struct *p) { } static inline bool should_numa_migrate_memory(struct task_struct *p, struct page *page, int src_nid, int dst_cpu) { return true; } #endif static inline struct pid *task_pid(struct task_struct *task) { return task->pids[PIDTYPE_PID].pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PID].pid; } /* * Without tasklist or rcu lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PGID].pid; } static inline struct pid *task_session(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_SID].pid; } struct pid_namespace; /* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * set_task_vxid() : assigns a virtual id to a task; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; } static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); } static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); } static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; } pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return pid_vnr(task_tgid(tsk)); } static inline int pid_alive(const struct task_struct *p); static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) { pid_t pid = 0; rcu_read_lock(); if (pid_alive(tsk)) pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); rcu_read_unlock(); return pid; } static inline pid_t task_ppid_nr(const struct task_struct *tsk) { return task_ppid_nr_ns(tsk, &init_pid_ns); } static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); } static inline pid_t task_pgrp_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); } static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); } static inline pid_t task_session_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); } /* obsolete, do not use */ static inline pid_t task_pgrp_nr(struct task_struct *tsk) { return task_pgrp_nr_ns(tsk, &init_pid_ns); } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */ static inline int pid_alive(const struct task_struct *p) { return p->pids[PIDTYPE_PID].pid != NULL; } /** * is_global_init - check if a task structure is init * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */ static inline int is_global_init(struct task_struct *tsk) { return tsk->pid == 1; } extern struct pid *cad_pid; extern void free_task(struct task_struct *tsk); #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (atomic_dec_and_test(&t->usage)) __put_task_struct(t); } struct task_struct *task_rcu_dereference(struct task_struct **ptask); struct task_struct *try_get_task_struct(struct task_struct **ptask); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime); extern void task_cputime_scaled(struct task_struct *t, cputime_t *utimescaled, cputime_t *stimescaled); extern cputime_t task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime) { if (utime) *utime = t->utime; if (stime) *stime = t->stime; } static inline void task_cputime_scaled(struct task_struct *t, cputime_t *utimescaled, cputime_t *stimescaled) { if (utimescaled) *utimescaled = t->utimescaled; if (stimescaled) *stimescaled = t->stimescaled; } static inline cputime_t task_gtime(struct task_struct *t) { return t->gtime; } #endif extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); /* * Per process flags */ #define PF_EXITING 0x00000004 /* getting shut down */ #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* dumped core */ #define PF_SIGNALED 0x00000400 /* killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ #define PF_FROZEN 0x00010000 /* frozen for system suspend */ #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ #define PF_KSWAPD 0x00040000 /* I am kswapd */ #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) \ conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) /* Per-process atomic flags. */ #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ #define TASK_PFA_TEST(name, func) \ static inline bool task_##func(struct task_struct *p) \ { return test_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_SET(name, func) \ static inline void task_set_##func(struct task_struct *p) \ { set_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_CLEAR(name, func) \ static inline void task_clear_##func(struct task_struct *p) \ { clear_bit(PFA_##name, &p->atomic_flags); } TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) TASK_PFA_TEST(SPREAD_PAGE, spread_page) TASK_PFA_SET(SPREAD_PAGE, spread_page) TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) TASK_PFA_TEST(SPREAD_SLAB, spread_slab) TASK_PFA_SET(SPREAD_SLAB, spread_slab) TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags * __GFP_FS is also cleared as it implies __GFP_IO. */ static inline gfp_t memalloc_noio_flags(gfp_t flags) { if (unlikely(current->flags & PF_MEMALLOC_NOIO)) flags &= ~(__GFP_IO | __GFP_FS); return flags; } static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /* * task->jobctl flags */ #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ #define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) #define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) #define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) #define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) #define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) #define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) #define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) extern bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask); extern void task_clear_jobctl_trapping(struct task_struct *task); extern void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask); #ifdef CONFIG_PREEMPT_RCU #define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ #define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ static inline void rcu_copy_process(struct task_struct *p) { p->rcu_read_lock_nesting = 0; p->rcu_read_unlock_special = 0; #ifdef CONFIG_TREE_PREEMPT_RCU p->rcu_blocked_node = NULL; #endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ #ifdef CONFIG_RCU_BOOST p->rcu_boost_mutex = NULL; #endif /* #ifdef CONFIG_RCU_BOOST */ INIT_LIST_HEAD(&p->rcu_node_entry); } #else static inline void rcu_copy_process(struct task_struct *p) { } #endif static inline void tsk_restore_flags(struct task_struct *task, unsigned long orig_flags, unsigned long flags) { task->flags &= ~flags; task->flags |= orig_flags & flags; } extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); #ifdef CONFIG_SMP extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); #else static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { } static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { if (!cpumask_test_cpu(0, new_mask)) return -EINVAL; return 0; } #endif #ifdef CONFIG_NO_HZ_COMMON void calc_load_enter_idle(void); void calc_load_exit_idle(void); #else static inline void calc_load_enter_idle(void) { } static inline void calc_load_exit_idle(void) { } #endif /* CONFIG_NO_HZ_COMMON */ #ifndef CONFIG_CPUMASK_OFFSTACK static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) { return set_cpus_allowed_ptr(p, &new_mask); } #endif /* * Do not use outside of architecture code which knows its limitations. * * sched_clock() has no promise of monotonicity or bounded drift between * CPUs, use (which you should not) requires disabling IRQs. * * Please use one of the three interfaces below. */ extern unsigned long long notrace sched_clock(void); /* * See the comment in kernel/sched/clock.c */ extern u64 cpu_clock(int cpu); extern u64 local_clock(void); extern u64 running_clock(void); extern u64 sched_clock_cpu(int cpu); extern void sched_clock_init(void); #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK static inline void sched_clock_tick(void) { } static inline void sched_clock_idle_sleep_event(void) { } static inline void sched_clock_idle_wakeup_event(u64 delta_ns) { } #else /* * Architectures can set this to 1 if they have specified * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, * but then during bootup it turns out that sched_clock() * is reliable after all: */ extern int sched_clock_stable(void); extern void set_sched_clock_stable(void); extern void clear_sched_clock_stable(void); extern void sched_clock_tick(void); extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(u64 delta_ns); #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING /* * An i/f to runtime opt-in for irq time accounting based off of sched_clock. * The reason for this explicit opt-in is not to have perf penalty with * slow sched_clocks. */ extern void enable_sched_clock_irqtime(void); extern void disable_sched_clock_irqtime(void); #else static inline void enable_sched_clock_irqtime(void) {} static inline void disable_sched_clock_irqtime(void) {} #endif extern unsigned long long task_sched_runtime(struct task_struct *task); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(u64 delta_ns); #ifdef CONFIG_HOTPLUG_CPU extern void idle_task_exit(void); #else static inline void idle_task_exit(void) {} #endif #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) extern void wake_up_nohz_cpu(int cpu); #else static inline void wake_up_nohz_cpu(int cpu) { } #endif #ifdef CONFIG_NO_HZ_FULL extern bool sched_can_stop_tick(void); extern u64 scheduler_tick_max_deferment(void); #else static inline bool sched_can_stop_tick(void) { return false; } #endif #ifdef CONFIG_SCHED_AUTOGROUP extern void sched_autogroup_create_attach(struct task_struct *p); extern void sched_autogroup_detach(struct task_struct *p); extern void sched_autogroup_fork(struct signal_struct *sig); extern void sched_autogroup_exit(struct signal_struct *sig); extern void sched_autogroup_exit_task(struct task_struct *p); #ifdef CONFIG_PROC_FS extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); #endif #else static inline void sched_autogroup_create_attach(struct task_struct *p) { } static inline void sched_autogroup_detach(struct task_struct *p) { } static inline void sched_autogroup_fork(struct signal_struct *sig) { } static inline void sched_autogroup_exit(struct signal_struct *sig) { } static inline void sched_autogroup_exit_task(struct task_struct *p) { } #endif extern int yield_to(struct task_struct *p, bool preempt); extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); extern int task_nice(const struct task_struct *p); extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); extern int sched_setattr(struct task_struct *, const struct sched_attr *); extern struct task_struct *idle_task(int cpu); /** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */ static inline bool is_idle_task(const struct task_struct *p) { return p->pid == 0; } extern struct task_struct *curr_task(int cpu); extern void set_curr_task(int cpu, struct task_struct *p); void yield(void); /* * The default (Linux) execution domain. */ extern struct exec_domain default_exec_domain; union thread_union { struct thread_info thread_info; unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif extern union thread_union init_thread_union; extern struct task_struct init_task; extern struct mm_struct init_mm; extern struct pid_namespace init_pid_ns; /* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */ extern struct task_struct *find_task_by_vpid(pid_t nr); extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); extern void __set_special_pids(struct pid *pid); /* per-UID process charging. */ extern struct user_struct * alloc_uid(kuid_t); static inline struct user_struct *get_uid(struct user_struct *u) { atomic_inc(&u->__count); return u; } extern void free_uid(struct user_struct *); #include <asm/current.h> extern void xtime_update(unsigned long ticks); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_dead(struct task_struct *p); extern void proc_caches_init(void); extern void flush_signals(struct task_struct *); extern void __flush_signals(struct task_struct *); extern void ignore_signals(struct task_struct *); extern void flush_signal_handlers(struct task_struct *, int force_default); extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) { unsigned long flags; int ret; spin_lock_irqsave(&tsk->sighand->siglock, flags); ret = dequeue_signal(tsk, mask, info); spin_unlock_irqrestore(&tsk->sighand->siglock, flags); return ret; } extern void block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask); extern void unblock_all_signals(void); extern void release_task(struct task_struct * p); extern int send_sig_info(int, struct siginfo *, struct task_struct *); extern int force_sigsegv(int, struct task_struct *); extern int force_sig_info(int, struct siginfo *, struct task_struct *); extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, const struct cred *, u32); extern int kill_pgrp(struct pid *pid, int sig, int priv); extern int kill_pid(struct pid *pid, int sig, int priv); extern int kill_proc_info(int, struct siginfo *, pid_t); extern __must_check bool do_notify_parent(struct task_struct *, int); extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); extern void force_sig(int, struct task_struct *); extern int send_sig(int, struct task_struct *, int); extern int zap_other_threads(struct task_struct *p); extern struct sigqueue *sigqueue_alloc(void); extern void sigqueue_free(struct sigqueue *); extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); static inline void restore_saved_sigmask(void) { if (test_and_clear_restore_sigmask()) __set_current_blocked(¤t->saved_sigmask); } static inline sigset_t *sigmask_to_save(void) { sigset_t *res = ¤t->blocked; if (unlikely(test_restore_sigmask())) res = ¤t->saved_sigmask; return res; } static inline int kill_cad_pid(int sig, int priv) { return kill_pid(cad_pid, sig, priv); } /* These can be the second arg to send_sig_info/send_group_sig_info. */ #define SEND_SIG_NOINFO ((struct siginfo *) 0) #define SEND_SIG_PRIV ((struct siginfo *) 1) #define SEND_SIG_FORCED ((struct siginfo *) 2) /* * True if we are on the alternate signal stack. */ static inline int on_sig_stack(unsigned long sp) { #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; #else return sp > current->sas_ss_sp && sp - current->sas_ss_sp <= current->sas_ss_size; #endif } static inline int sas_ss_flags(unsigned long sp) { return (current->sas_ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) #ifdef CONFIG_STACK_GROWSUP return current->sas_ss_sp; #else return current->sas_ss_sp + current->sas_ss_size; #endif return sp; } /* * Routines for handling mm_structs */ extern struct mm_struct * mm_alloc(void); /* mmdrop drops the mm and the page tables */ extern void __mmdrop(struct mm_struct *); static inline void mmdrop(struct mm_struct *mm) { /* * The implicit full barrier implied by atomic_dec_and_test() is * required by the membarrier system call before returning to * user-space, after storing to rq->curr. */ if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } static inline bool mmget_not_zero(struct mm_struct *mm) { return atomic_inc_not_zero(&mm->mm_users); } /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* * Grab a reference to a task's mm, if it is not already going away * and ptrace_may_access with the mode parameter passed to it * succeeds. */ extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); /* Remove the current tasks stale references to the old mm_struct */ extern void mm_release(struct task_struct *, struct mm_struct *); /* Allocate a new mm structure and copy contents from tsk->mm */ extern struct mm_struct *dup_mm(struct task_struct *tsk); extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *); extern void flush_thread(void); extern void exit_thread(void); extern void exit_files(struct task_struct *); extern void __cleanup_sighand(struct sighand_struct *); extern void exit_itimers(struct signal_struct *); extern void flush_itimer_signals(void); extern void do_group_exit(int); extern int allow_signal(int); extern int disallow_signal(int); extern int do_execve(struct filename *, const char __user * const __user *, const char __user * const __user *); extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); struct task_struct *fork_idle(int); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern void __set_task_comm(struct task_struct *tsk, char *from, bool exec); static inline void set_task_comm(struct task_struct *tsk, char *from) { __set_task_comm(tsk, from, false); } extern char *get_task_comm(char *to, struct task_struct *tsk); #ifdef CONFIG_SMP void scheduler_ipi(void); extern unsigned long wait_task_inactive(struct task_struct *, long match_state); #else static inline void scheduler_ipi(void) { } static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) { return 1; } #endif #define next_task(p) \ list_entry_rcu((p)->tasks.next, struct task_struct, tasks) #define for_each_process(p) \ for (p = &init_task ; (p = next_task(p)) != &init_task ; ) extern bool current_is_single_threaded(void); /* * Careful: do_each_thread/while_each_thread is a double loop so * 'break' will not work as expected - use goto instead. */ #define do_each_thread(g, t) \ for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do #define while_each_thread(g, t) \ while ((t = next_thread(t)) != g) #define __for_each_thread(signal, t) \ list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) #define for_each_thread(p, t) \ __for_each_thread((p)->signal, t) /* Careful: this is a double loop, 'break' won't work as expected. */ #define for_each_process_thread(p, t) \ for_each_process(p) for_each_thread(p, t) static inline int get_nr_threads(struct task_struct *tsk) { return tsk->signal->nr_threads; } static inline bool thread_group_leader(struct task_struct *p) { return p->exit_signal >= 0; } /* Do to the insanities of de_thread it is possible for a process * to have the pid of the thread group leader without actually being * the thread group leader. For iteration through the pids in proc * all we care about is that we have a task with the appropriate * pid, we don't actually care if we have the right task. */ static inline int has_group_leader_pid(struct task_struct *p) { return p->pid == p->tgid; } static inline int same_thread_group(struct task_struct *p1, struct task_struct *p2) { return p1->tgid == p2->tgid; } static inline struct task_struct *next_thread(const struct task_struct *p) { return list_entry_rcu(p->thread_group.next, struct task_struct, thread_group); } /* * simple wrapper function that always returns NULL * for RHEL-7 to enable upstream backports that have this check in it. * Returning NULL means the task's stack is direct-mapped and not vmalloc'd, * which is the case for RHEL-7. * */ static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } static inline int thread_group_empty(struct task_struct *p) { return list_empty(&p->thread_group); } #define delay_group_leader(p) \ (thread_group_leader(p) && !thread_group_empty(p)) /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. * * Nests both inside and outside of qread_lock(&tasklist_lock). * It must not be nested with qwrite_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, unsigned long *flags); static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) { struct sighand_struct *ret; ret = __lock_task_sighand(tsk, flags); (void)__cond_lock(&tsk->sighand->siglock, ret); return ret; } static inline void unlock_task_sighand(struct task_struct *tsk, unsigned long *flags) { spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); } #ifdef CONFIG_CGROUPS static inline void threadgroup_change_begin(struct task_struct *tsk) { down_read(&tsk->signal->group_rwsem); } static inline void threadgroup_change_end(struct task_struct *tsk) { up_read(&tsk->signal->group_rwsem); } /** * threadgroup_lock - lock threadgroup * @tsk: member task of the threadgroup to lock * * Lock the threadgroup @tsk belongs to. No new task is allowed to enter * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or * change ->group_leader/pid. This is useful for cases where the threadgroup * needs to stay stable across blockable operations. * * fork and exit paths explicitly call threadgroup_change_{begin|end}() for * synchronization. While held, no new task will be added to threadgroup * and no existing live task will have its PF_EXITING set. * * de_thread() does threadgroup_change_{begin|end}() when a non-leader * sub-thread becomes a new leader. */ static inline void threadgroup_lock(struct task_struct *tsk) { down_write(&tsk->signal->group_rwsem); } /** * threadgroup_unlock - unlock threadgroup * @tsk: member task of the threadgroup to unlock * * Reverse threadgroup_lock(). */ static inline void threadgroup_unlock(struct task_struct *tsk) { up_write(&tsk->signal->group_rwsem); } #else static inline void threadgroup_change_begin(struct task_struct *tsk) {} static inline void threadgroup_change_end(struct task_struct *tsk) {} static inline void threadgroup_lock(struct task_struct *tsk) {} static inline void threadgroup_unlock(struct task_struct *tsk) {} #endif #ifndef __HAVE_THREAD_FUNCTIONS #define task_thread_info(task) ((struct thread_info *)(task)->stack) #define task_stack_page(task) ((task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } static inline unsigned long *end_of_stack(struct task_struct *p) { return (unsigned long *)(task_thread_info(p) + 1); } #endif static inline int object_is_on_stack(void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_info_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ n++; } while (!*n); return (unsigned long)n - (unsigned long)end_of_stack(p); } #endif /* set thread flags in other task's structures * - see asm/thread_info.h for TIF_xxxx flags available */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int test_tsk_need_resched(struct task_struct *tsk) { return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } static inline int restart_syscall(void) { set_tsk_thread_flag(current, TIF_SIGPENDING); return -ERESTARTNOINTR; } static inline int signal_pending(struct task_struct *p) { return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); } static inline int __fatal_signal_pending(struct task_struct *p) { return unlikely(sigismember(&p->pending.signal, SIGKILL)); } static inline int fatal_signal_pending(struct task_struct *p) { return signal_pending(p) && __fatal_signal_pending(p); } static inline int signal_pending_state(long state, struct task_struct *p) { if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) return 0; if (!signal_pending(p)) return 0; return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); } static __always_inline int need_resched(void) { return unlikely(test_thread_flag(TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */ extern int _cond_resched(void); #define cond_resched() ({ \ __might_sleep(__FILE__, __LINE__, 0); \ _cond_resched(); \ }) extern int __cond_resched_lock(spinlock_t *lock); #ifdef CONFIG_PREEMPT_COUNT #define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET #else #define PREEMPT_LOCK_OFFSET 0 #endif #define cond_resched_lock(lock) ({ \ __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ __cond_resched_lock(lock); \ }) extern int __cond_resched_softirq(void); #define cond_resched_softirq() ({ \ __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ __cond_resched_softirq(); \ }) static inline void cond_resched_rcu(void) { #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) rcu_read_unlock(); cond_resched(); rcu_read_lock(); #endif } /* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPT, * but a general need for low latency) */ static inline int spin_needbreak(spinlock_t *lock) { #ifdef CONFIG_PREEMPT return spin_is_contended(lock); #else return 0; #endif } /* * Idle thread specific functions to determine the need_resched * polling state. We have two versions, one based on TS_POLLING in * thread_info.status and one based on TIF_POLLING_NRFLAG in * thread_info.flags */ #ifdef TS_POLLING static inline int tsk_is_polling(struct task_struct *p) { return task_thread_info(p)->status & TS_POLLING; } static inline void __current_set_polling(void) { current_thread_info()->status |= TS_POLLING; } static inline bool __must_check current_set_polling_and_test(void) { __current_set_polling(); /* * Polling state must be visible before we test NEED_RESCHED, * paired by resched_curr() */ smp_mb(); return unlikely(tif_need_resched()); } static inline void __current_clr_polling(void) { current_thread_info()->status &= ~TS_POLLING; } static inline bool __must_check current_clr_polling_and_test(void) { __current_clr_polling(); /* * Polling state must be visible before we test NEED_RESCHED, * paired by resched_curr() */ smp_mb(); return unlikely(tif_need_resched()); } #elif defined(TIF_POLLING_NRFLAG) static inline int tsk_is_polling(struct task_struct *p) { return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); } static inline void __current_set_polling(void) { set_thread_flag(TIF_POLLING_NRFLAG); } static inline bool __must_check current_set_polling_and_test(void) { __current_set_polling(); /* * Polling state must be visible before we test NEED_RESCHED, * paired by resched_curr() * * XXX: assumes set/clear bit are identical barrier wise. */ smp_mb__after_clear_bit(); return unlikely(tif_need_resched()); } static inline void __current_clr_polling(void) { clear_thread_flag(TIF_POLLING_NRFLAG); } static inline bool __must_check current_clr_polling_and_test(void) { __current_clr_polling(); /* * Polling state must be visible before we test NEED_RESCHED, * paired by resched_curr() */ smp_mb__after_clear_bit(); return unlikely(tif_need_resched()); } #else static inline int tsk_is_polling(struct task_struct *p) { return 0; } static inline void __current_set_polling(void) { } static inline void __current_clr_polling(void) { } static inline bool __must_check current_set_polling_and_test(void) { return unlikely(tif_need_resched()); } static inline bool __must_check current_clr_polling_and_test(void) { return unlikely(tif_need_resched()); } #endif /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); static inline void thread_group_cputime_init(struct signal_struct *sig) { raw_spin_lock_init(&sig->cputimer.lock); } /* * Reevaluate whether the task has signals pending delivery. * Wake the task if so. * This is required every time the blocked sigset_t changes. * callers must hold sighand->siglock. */ extern void recalc_sigpending_and_wake(struct task_struct *t); extern void recalc_sigpending(void); extern void signal_wake_up_state(struct task_struct *t, unsigned int state); static inline void signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); } static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) { signal_wake_up_state(t, resume ? __TASK_TRACED : 0); } /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { return task_thread_info(p)->cpu; } static inline int task_node(const struct task_struct *p) { return cpu_to_node(task_cpu(p)); } extern void set_task_cpu(struct task_struct *p, unsigned int cpu); #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); extern long sched_getaffinity(pid_t pid, struct cpumask *mask); #ifdef CONFIG_CGROUP_SCHED extern struct task_group root_task_group; #endif /* CONFIG_CGROUP_SCHED */ extern int task_can_switch_user(struct user_struct *up, struct task_struct *tsk); #ifdef CONFIG_TASK_XACCT static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { tsk->ioac.rchar += amt; } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { tsk->ioac.wchar += amt; } static inline void inc_syscr(struct task_struct *tsk) { tsk->ioac.syscr++; } static inline void inc_syscw(struct task_struct *tsk) { tsk->ioac.syscw++; } #else static inline void add_rchar(struct task_struct *tsk, ssize_t amt) { } static inline void add_wchar(struct task_struct *tsk, ssize_t amt) { } static inline void inc_syscr(struct task_struct *tsk) { } static inline void inc_syscw(struct task_struct *tsk) { } #endif #ifndef TASK_SIZE_OF #define TASK_SIZE_OF(tsk) TASK_SIZE #endif #ifdef CONFIG_MM_OWNER extern void mm_update_next_owner(struct mm_struct *mm); extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); #else static inline void mm_update_next_owner(struct mm_struct *mm) { } static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) { } #endif /* CONFIG_MM_OWNER */ static inline unsigned long task_rlimit(const struct task_struct *tsk, unsigned int limit) { return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); } static inline unsigned long task_rlimit_max(const struct task_struct *tsk, unsigned int limit) { return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); } static inline unsigned long rlimit(unsigned int limit) { return task_rlimit(current, limit); } static inline unsigned long rlimit_max(unsigned int limit) { return task_rlimit_max(current, limit); } #ifdef CONFIG_CPU_FREQ struct update_util_data { void (*func)(struct update_util_data *data, u64 time, unsigned long util, unsigned long max); }; void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); #endif /* CONFIG_CPU_FREQ */ #endif