GIF89a;
Direktori : /usr/src/kernels/3.10.0-1160.88.1.el7.centos.plus.x86_64/include/linux/ |
Current File : //usr/src/kernels/3.10.0-1160.88.1.el7.centos.plus.x86_64/include/linux/percpu.h |
#ifndef __LINUX_PERCPU_H #define __LINUX_PERCPU_H #include <linux/mmdebug.h> #include <linux/preempt.h> #include <linux/smp.h> #include <linux/cpumask.h> #include <linux/pfn.h> #include <linux/init.h> #include <asm/percpu.h> /* enough to cover all DEFINE_PER_CPUs in modules */ #ifdef CONFIG_MODULES #define PERCPU_MODULE_RESERVE (8 << 10) #else #define PERCPU_MODULE_RESERVE 0 #endif #ifndef PERCPU_ENOUGH_ROOM #define PERCPU_ENOUGH_ROOM \ (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \ PERCPU_MODULE_RESERVE) #endif /* * Must be an lvalue. Since @var must be a simple identifier, * we force a syntax error here if it isn't. */ #define get_cpu_var(var) (*({ \ preempt_disable(); \ &__get_cpu_var(var); })) /* * The weird & is necessary because sparse considers (void)(var) to be * a direct dereference of percpu variable (var). */ #define put_cpu_var(var) do { \ (void)&(var); \ preempt_enable(); \ } while (0) #define get_cpu_ptr(var) ({ \ preempt_disable(); \ this_cpu_ptr(var); }) #define put_cpu_ptr(var) do { \ (void)(var); \ preempt_enable(); \ } while (0) /* minimum unit size, also is the maximum supported allocation size */ #define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10) /* minimum allocation size and shift in bytes */ #define PCPU_MIN_ALLOC_SHIFT 2 #define PCPU_MIN_ALLOC_SIZE (1 << PCPU_MIN_ALLOC_SHIFT) /* * The PCPU_BITMAP_BLOCK_SIZE must be the same size as PAGE_SIZE as the * updating of hints is used to manage the nr_empty_pop_pages in both * the chunk and globally. */ #define PCPU_BITMAP_BLOCK_SIZE PAGE_SIZE #define PCPU_BITMAP_BLOCK_BITS (PCPU_BITMAP_BLOCK_SIZE >> \ PCPU_MIN_ALLOC_SHIFT) /* * Percpu allocator can serve percpu allocations before slab is * initialized which allows slab to depend on the percpu allocator. * The following two parameters decide how much resource to * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or * larger than PERCPU_DYNAMIC_EARLY_SIZE. */ #define PERCPU_DYNAMIC_EARLY_SLOTS 128 #define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10) /* * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy * back on the first chunk for dynamic percpu allocation if arch is * manually allocating and mapping it for faster access (as a part of * large page mapping for example). * * The following values give between one and two pages of free space * after typical minimal boot (2-way SMP, single disk and NIC) with * both defconfig and a distro config on x86_64 and 32. More * intelligent way to determine this would be nice. */ #if BITS_PER_LONG > 32 #define PERCPU_DYNAMIC_RESERVE (28 << 10) #else #define PERCPU_DYNAMIC_RESERVE (20 << 10) #endif extern void *pcpu_base_addr; extern const unsigned long *pcpu_unit_offsets; struct pcpu_group_info { int nr_units; /* aligned # of units */ unsigned long base_offset; /* base address offset */ unsigned int *cpu_map; /* unit->cpu map, empty * entries contain NR_CPUS */ }; struct pcpu_alloc_info { size_t static_size; size_t reserved_size; size_t dyn_size; size_t unit_size; size_t atom_size; size_t alloc_size; size_t __ai_size; /* internal, don't use */ int nr_groups; /* 0 if grouping unnecessary */ struct pcpu_group_info groups[]; }; enum pcpu_fc { PCPU_FC_AUTO, PCPU_FC_EMBED, PCPU_FC_PAGE, PCPU_FC_NR, }; extern const char * const pcpu_fc_names[PCPU_FC_NR]; extern enum pcpu_fc pcpu_chosen_fc; typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, size_t align); typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, int nr_units); extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, void *base_addr); #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn); #endif #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK extern int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn, pcpu_fc_populate_pte_fn_t populate_pte_fn); #endif /* * Use this to get to a cpu's version of the per-cpu object * dynamically allocated. Non-atomic access to the current CPU's * version should probably be combined with get_cpu()/put_cpu(). */ #ifdef CONFIG_SMP #define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) #else #define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) #endif extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); extern bool is_kernel_percpu_address(unsigned long addr); #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) extern void __init setup_per_cpu_areas(void); #endif extern void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp); extern void __percpu *__alloc_percpu(size_t size, size_t align); extern void free_percpu(void __percpu *__pdata); extern phys_addr_t per_cpu_ptr_to_phys(void *addr); #define alloc_percpu_gfp(type, gfp) \ (typeof(type) __percpu *)__alloc_percpu_gfp(sizeof(type), \ __alignof__(type), gfp) #define alloc_percpu(type) \ (typeof(type) __percpu *)__alloc_percpu(sizeof(type), \ __alignof__(type)) extern unsigned long pcpu_nr_pages(void); /* * Branching function to split up a function into a set of functions that * are called for different scalar sizes of the objects handled. */ extern void __bad_size_call_parameter(void); #define __pcpu_size_call_return(stem, variable) \ ({ typeof(variable) pscr_ret__; \ __verify_pcpu_ptr(&(variable)); \ switch(sizeof(variable)) { \ case 1: pscr_ret__ = stem##1(variable);break; \ case 2: pscr_ret__ = stem##2(variable);break; \ case 4: pscr_ret__ = stem##4(variable);break; \ case 8: pscr_ret__ = stem##8(variable);break; \ default: \ __bad_size_call_parameter();break; \ } \ pscr_ret__; \ }) #define __pcpu_size_call_return2(stem, variable, ...) \ ({ \ typeof(variable) pscr2_ret__; \ __verify_pcpu_ptr(&(variable)); \ switch(sizeof(variable)) { \ case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \ case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \ case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \ case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \ default: \ __bad_size_call_parameter(); break; \ } \ pscr2_ret__; \ }) /* * Special handling for cmpxchg_double. cmpxchg_double is passed two * percpu variables. The first has to be aligned to a double word * boundary and the second has to follow directly thereafter. * We enforce this on all architectures even if they don't support * a double cmpxchg instruction, since it's a cheap requirement, and it * avoids breaking the requirement for architectures with the instruction. */ #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \ ({ \ bool pdcrb_ret__; \ __verify_pcpu_ptr(&pcp1); \ BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \ VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \ VM_BUG_ON((unsigned long)(&pcp2) != \ (unsigned long)(&pcp1) + sizeof(pcp1)); \ switch(sizeof(pcp1)) { \ case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \ case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \ case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \ case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \ default: \ __bad_size_call_parameter(); break; \ } \ pdcrb_ret__; \ }) #define __pcpu_size_call(stem, variable, ...) \ do { \ __verify_pcpu_ptr(&(variable)); \ switch(sizeof(variable)) { \ case 1: stem##1(variable, __VA_ARGS__);break; \ case 2: stem##2(variable, __VA_ARGS__);break; \ case 4: stem##4(variable, __VA_ARGS__);break; \ case 8: stem##8(variable, __VA_ARGS__);break; \ default: \ __bad_size_call_parameter();break; \ } \ } while (0) /* * Optimized manipulation for memory allocated through the per cpu * allocator or for addresses of per cpu variables. * * These operation guarantee exclusivity of access for other operations * on the *same* processor. The assumption is that per cpu data is only * accessed by a single processor instance (the current one). * * The first group is used for accesses that must be done in a * preemption safe way since we know that the context is not preempt * safe. Interrupts may occur. If the interrupt modifies the variable * too then RMW actions will not be reliable. * * The arch code can provide optimized functions in two ways: * * 1. Override the function completely. F.e. define this_cpu_add(). * The arch must then ensure that the various scalar format passed * are handled correctly. * * 2. Provide functions for certain scalar sizes. F.e. provide * this_cpu_add_2() to provide per cpu atomic operations for 2 byte * sized RMW actions. If arch code does not provide operations for * a scalar size then the fallback in the generic code will be * used. */ #define _this_cpu_generic_read(pcp) \ ({ typeof(pcp) ret__; \ preempt_disable(); \ ret__ = *this_cpu_ptr(&(pcp)); \ preempt_enable(); \ ret__; \ }) #ifndef this_cpu_read # ifndef this_cpu_read_1 # define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp) # endif # ifndef this_cpu_read_2 # define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp) # endif # ifndef this_cpu_read_4 # define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp) # endif # ifndef this_cpu_read_8 # define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp) # endif # define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp)) #endif #define _this_cpu_generic_to_op(pcp, val, op) \ do { \ unsigned long flags; \ raw_local_irq_save(flags); \ *__this_cpu_ptr(&(pcp)) op val; \ raw_local_irq_restore(flags); \ } while (0) #ifndef this_cpu_write # ifndef this_cpu_write_1 # define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef this_cpu_write_2 # define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef this_cpu_write_4 # define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef this_cpu_write_8 # define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =) # endif # define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val)) #endif #ifndef this_cpu_add # ifndef this_cpu_add_1 # define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef this_cpu_add_2 # define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef this_cpu_add_4 # define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef this_cpu_add_8 # define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=) # endif # define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val)) #endif #ifndef this_cpu_sub # define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(val)) #endif #ifndef this_cpu_inc # define this_cpu_inc(pcp) this_cpu_add((pcp), 1) #endif #ifndef this_cpu_dec # define this_cpu_dec(pcp) this_cpu_sub((pcp), 1) #endif #ifndef this_cpu_and # ifndef this_cpu_and_1 # define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef this_cpu_and_2 # define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef this_cpu_and_4 # define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef this_cpu_and_8 # define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=) # endif # define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val)) #endif #ifndef this_cpu_or # ifndef this_cpu_or_1 # define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef this_cpu_or_2 # define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef this_cpu_or_4 # define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef this_cpu_or_8 # define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=) # endif # define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) #endif #ifndef this_cpu_xor # ifndef this_cpu_xor_1 # define this_cpu_xor_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef this_cpu_xor_2 # define this_cpu_xor_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef this_cpu_xor_4 # define this_cpu_xor_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef this_cpu_xor_8 # define this_cpu_xor_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), ^=) # endif # define this_cpu_xor(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val)) #endif #define _this_cpu_generic_add_return(pcp, val) \ ({ \ typeof(pcp) ret__; \ unsigned long flags; \ raw_local_irq_save(flags); \ __this_cpu_add(pcp, val); \ ret__ = __this_cpu_read(pcp); \ raw_local_irq_restore(flags); \ ret__; \ }) #ifndef this_cpu_add_return # ifndef this_cpu_add_return_1 # define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val) # endif # ifndef this_cpu_add_return_2 # define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val) # endif # ifndef this_cpu_add_return_4 # define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val) # endif # ifndef this_cpu_add_return_8 # define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val) # endif # define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val) #endif #define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(val)) #define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1) #define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1) #define _this_cpu_generic_xchg(pcp, nval) \ ({ typeof(pcp) ret__; \ unsigned long flags; \ raw_local_irq_save(flags); \ ret__ = __this_cpu_read(pcp); \ __this_cpu_write(pcp, nval); \ raw_local_irq_restore(flags); \ ret__; \ }) #ifndef this_cpu_xchg # ifndef this_cpu_xchg_1 # define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval) # endif # ifndef this_cpu_xchg_2 # define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval) # endif # ifndef this_cpu_xchg_4 # define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval) # endif # ifndef this_cpu_xchg_8 # define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval) # endif # define this_cpu_xchg(pcp, nval) \ __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) #endif #define _this_cpu_generic_cmpxchg(pcp, oval, nval) \ ({ \ typeof(pcp) ret__; \ unsigned long flags; \ raw_local_irq_save(flags); \ ret__ = __this_cpu_read(pcp); \ if (ret__ == (oval)) \ __this_cpu_write(pcp, nval); \ raw_local_irq_restore(flags); \ ret__; \ }) #ifndef this_cpu_cmpxchg # ifndef this_cpu_cmpxchg_1 # define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef this_cpu_cmpxchg_2 # define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef this_cpu_cmpxchg_4 # define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef this_cpu_cmpxchg_8 # define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # define this_cpu_cmpxchg(pcp, oval, nval) \ __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) #endif /* * cmpxchg_double replaces two adjacent scalars at once. The first * two parameters are per cpu variables which have to be of the same * size. A truth value is returned to indicate success or failure * (since a double register result is difficult to handle). There is * very limited hardware support for these operations, so only certain * sizes may work. */ #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ ({ \ int ret__; \ unsigned long flags; \ raw_local_irq_save(flags); \ ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \ oval1, oval2, nval1, nval2); \ raw_local_irq_restore(flags); \ ret__; \ }) #ifndef this_cpu_cmpxchg_double # ifndef this_cpu_cmpxchg_double_1 # define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef this_cpu_cmpxchg_double_2 # define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef this_cpu_cmpxchg_double_4 # define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef this_cpu_cmpxchg_double_8 # define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) #endif /* * Generic percpu operations for context that are safe from preemption/interrupts. * Either we do not care about races or the caller has the * responsibility of handling preemption/interrupt issues. Arch code can still * override these instructions since the arch per cpu code may be more * efficient and may actually get race freeness for free (that is the * case for x86 for example). * * If there is no other protection through preempt disable and/or * disabling interupts then one of these RMW operations can show unexpected * behavior because the execution thread was rescheduled on another processor * or an interrupt occurred and the same percpu variable was modified from * the interrupt context. */ #ifndef __this_cpu_read # ifndef __this_cpu_read_1 # define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp))) # endif # ifndef __this_cpu_read_2 # define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp))) # endif # ifndef __this_cpu_read_4 # define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp))) # endif # ifndef __this_cpu_read_8 # define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp))) # endif # define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp)) #endif #define __this_cpu_generic_to_op(pcp, val, op) \ do { \ *__this_cpu_ptr(&(pcp)) op val; \ } while (0) #ifndef __this_cpu_write # ifndef __this_cpu_write_1 # define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef __this_cpu_write_2 # define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef __this_cpu_write_4 # define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) # endif # ifndef __this_cpu_write_8 # define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =) # endif # define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val)) #endif #ifndef __this_cpu_add # ifndef __this_cpu_add_1 # define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef __this_cpu_add_2 # define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef __this_cpu_add_4 # define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) # endif # ifndef __this_cpu_add_8 # define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=) # endif # define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val)) #endif #ifndef __this_cpu_sub # define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(val)) #endif #ifndef __this_cpu_inc # define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1) #endif #ifndef __this_cpu_dec # define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1) #endif #ifndef __this_cpu_and # ifndef __this_cpu_and_1 # define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef __this_cpu_and_2 # define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef __this_cpu_and_4 # define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) # endif # ifndef __this_cpu_and_8 # define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=) # endif # define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val)) #endif #ifndef __this_cpu_or # ifndef __this_cpu_or_1 # define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef __this_cpu_or_2 # define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef __this_cpu_or_4 # define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) # endif # ifndef __this_cpu_or_8 # define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=) # endif # define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val)) #endif #ifndef __this_cpu_xor # ifndef __this_cpu_xor_1 # define __this_cpu_xor_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef __this_cpu_xor_2 # define __this_cpu_xor_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef __this_cpu_xor_4 # define __this_cpu_xor_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) # endif # ifndef __this_cpu_xor_8 # define __this_cpu_xor_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), ^=) # endif # define __this_cpu_xor(pcp, val) __pcpu_size_call(__this_cpu_xor_, (pcp), (val)) #endif #define __this_cpu_generic_add_return(pcp, val) \ ({ \ __this_cpu_add(pcp, val); \ __this_cpu_read(pcp); \ }) #ifndef __this_cpu_add_return # ifndef __this_cpu_add_return_1 # define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val) # endif # ifndef __this_cpu_add_return_2 # define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val) # endif # ifndef __this_cpu_add_return_4 # define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val) # endif # ifndef __this_cpu_add_return_8 # define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val) # endif # define __this_cpu_add_return(pcp, val) \ __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val) #endif #define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(val)) #define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1) #define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1) #define __this_cpu_generic_xchg(pcp, nval) \ ({ typeof(pcp) ret__; \ ret__ = __this_cpu_read(pcp); \ __this_cpu_write(pcp, nval); \ ret__; \ }) #ifndef __this_cpu_xchg # ifndef __this_cpu_xchg_1 # define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval) # endif # ifndef __this_cpu_xchg_2 # define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval) # endif # ifndef __this_cpu_xchg_4 # define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval) # endif # ifndef __this_cpu_xchg_8 # define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval) # endif # define __this_cpu_xchg(pcp, nval) \ __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) #endif #define __this_cpu_generic_cmpxchg(pcp, oval, nval) \ ({ \ typeof(pcp) ret__; \ ret__ = __this_cpu_read(pcp); \ if (ret__ == (oval)) \ __this_cpu_write(pcp, nval); \ ret__; \ }) #ifndef __this_cpu_cmpxchg # ifndef __this_cpu_cmpxchg_1 # define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef __this_cpu_cmpxchg_2 # define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef __this_cpu_cmpxchg_4 # define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # ifndef __this_cpu_cmpxchg_8 # define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval) # endif # define __this_cpu_cmpxchg(pcp, oval, nval) \ __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) #endif #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ ({ \ int __ret = 0; \ if (__this_cpu_read(pcp1) == (oval1) && \ __this_cpu_read(pcp2) == (oval2)) { \ __this_cpu_write(pcp1, (nval1)); \ __this_cpu_write(pcp2, (nval2)); \ __ret = 1; \ } \ (__ret); \ }) #ifndef __this_cpu_cmpxchg_double # ifndef __this_cpu_cmpxchg_double_1 # define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef __this_cpu_cmpxchg_double_2 # define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef __this_cpu_cmpxchg_double_4 # define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # ifndef __this_cpu_cmpxchg_double_8 # define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) # endif # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \ __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) #endif /* To avoid include hell, as printk can not declare this, we declare it here */ DECLARE_PER_CPU(printk_func_t, printk_func); #endif /* __LINUX_PERCPU_H */