GIF89a;
Direktori : /usr/src/kernels/3.10.0-1160.83.1.el7.centos.plus.x86_64/include/linux/ |
Current File : //usr/src/kernels/3.10.0-1160.83.1.el7.centos.plus.x86_64/include/linux/firewire.h |
#ifndef _LINUX_FIREWIRE_H #define _LINUX_FIREWIRE_H #include <linux/completion.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/sysfs.h> #include <linux/timer.h> #include <linux/types.h> #include <linux/workqueue.h> #include <linux/atomic.h> #include <asm/byteorder.h> #define CSR_REGISTER_BASE 0xfffff0000000ULL /* register offsets are relative to CSR_REGISTER_BASE */ #define CSR_STATE_CLEAR 0x0 #define CSR_STATE_SET 0x4 #define CSR_NODE_IDS 0x8 #define CSR_RESET_START 0xc #define CSR_SPLIT_TIMEOUT_HI 0x18 #define CSR_SPLIT_TIMEOUT_LO 0x1c #define CSR_CYCLE_TIME 0x200 #define CSR_BUS_TIME 0x204 #define CSR_BUSY_TIMEOUT 0x210 #define CSR_PRIORITY_BUDGET 0x218 #define CSR_BUS_MANAGER_ID 0x21c #define CSR_BANDWIDTH_AVAILABLE 0x220 #define CSR_CHANNELS_AVAILABLE 0x224 #define CSR_CHANNELS_AVAILABLE_HI 0x224 #define CSR_CHANNELS_AVAILABLE_LO 0x228 #define CSR_MAINT_UTILITY 0x230 #define CSR_BROADCAST_CHANNEL 0x234 #define CSR_CONFIG_ROM 0x400 #define CSR_CONFIG_ROM_END 0x800 #define CSR_OMPR 0x900 #define CSR_OPCR(i) (0x904 + (i) * 4) #define CSR_IMPR 0x980 #define CSR_IPCR(i) (0x984 + (i) * 4) #define CSR_FCP_COMMAND 0xB00 #define CSR_FCP_RESPONSE 0xD00 #define CSR_FCP_END 0xF00 #define CSR_TOPOLOGY_MAP 0x1000 #define CSR_TOPOLOGY_MAP_END 0x1400 #define CSR_SPEED_MAP 0x2000 #define CSR_SPEED_MAP_END 0x3000 #define CSR_OFFSET 0x40 #define CSR_LEAF 0x80 #define CSR_DIRECTORY 0xc0 #define CSR_DESCRIPTOR 0x01 #define CSR_VENDOR 0x03 #define CSR_HARDWARE_VERSION 0x04 #define CSR_UNIT 0x11 #define CSR_SPECIFIER_ID 0x12 #define CSR_VERSION 0x13 #define CSR_DEPENDENT_INFO 0x14 #define CSR_MODEL 0x17 #define CSR_DIRECTORY_ID 0x20 struct fw_csr_iterator { const u32 *p; const u32 *end; }; void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p); int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value); int fw_csr_string(const u32 *directory, int key, char *buf, size_t size); extern struct bus_type fw_bus_type; struct fw_card_driver; struct fw_node; struct fw_card { const struct fw_card_driver *driver; struct device *device; struct kref kref; struct completion done; int node_id; int generation; int current_tlabel; u64 tlabel_mask; struct list_head transaction_list; u64 reset_jiffies; u32 split_timeout_hi; u32 split_timeout_lo; unsigned int split_timeout_cycles; unsigned int split_timeout_jiffies; unsigned long long guid; unsigned max_receive; int link_speed; int config_rom_generation; spinlock_t lock; /* Take this lock when handling the lists in * this struct. */ struct fw_node *local_node; struct fw_node *root_node; struct fw_node *irm_node; u8 color; /* must be u8 to match the definition in struct fw_node */ int gap_count; bool beta_repeaters_present; int index; struct list_head link; struct list_head phy_receiver_list; struct delayed_work br_work; /* bus reset job */ bool br_short; struct delayed_work bm_work; /* bus manager job */ int bm_retries; int bm_generation; int bm_node_id; bool bm_abdicate; bool priority_budget_implemented; /* controller feature */ bool broadcast_channel_auto_allocated; /* controller feature */ bool broadcast_channel_allocated; u32 broadcast_channel; __be32 topology_map[(CSR_TOPOLOGY_MAP_END - CSR_TOPOLOGY_MAP) / 4]; __be32 maint_utility_register; }; static inline struct fw_card *fw_card_get(struct fw_card *card) { kref_get(&card->kref); return card; } void fw_card_release(struct kref *kref); static inline void fw_card_put(struct fw_card *card) { kref_put(&card->kref, fw_card_release); } struct fw_attribute_group { struct attribute_group *groups[2]; struct attribute_group group; struct attribute *attrs[13]; }; enum fw_device_state { FW_DEVICE_INITIALIZING, FW_DEVICE_RUNNING, FW_DEVICE_GONE, FW_DEVICE_SHUTDOWN, }; /* * Note, fw_device.generation always has to be read before fw_device.node_id. * Use SMP memory barriers to ensure this. Otherwise requests will be sent * to an outdated node_id if the generation was updated in the meantime due * to a bus reset. * * Likewise, fw-core will take care to update .node_id before .generation so * that whenever fw_device.generation is current WRT the actual bus generation, * fw_device.node_id is guaranteed to be current too. * * The same applies to fw_device.card->node_id vs. fw_device.generation. * * fw_device.config_rom and fw_device.config_rom_length may be accessed during * the lifetime of any fw_unit belonging to the fw_device, before device_del() * was called on the last fw_unit. Alternatively, they may be accessed while * holding fw_device_rwsem. */ struct fw_device { atomic_t state; struct fw_node *node; int node_id; int generation; unsigned max_speed; struct fw_card *card; struct device device; struct mutex client_list_mutex; struct list_head client_list; const u32 *config_rom; size_t config_rom_length; int config_rom_retries; unsigned is_local:1; unsigned max_rec:4; unsigned cmc:1; unsigned irmc:1; unsigned bc_implemented:2; struct delayed_work work; struct fw_attribute_group attribute_group; }; static inline struct fw_device *fw_device(struct device *dev) { return container_of(dev, struct fw_device, device); } static inline int fw_device_is_shutdown(struct fw_device *device) { return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN; } int fw_device_enable_phys_dma(struct fw_device *device); /* * fw_unit.directory must not be accessed after device_del(&fw_unit.device). */ struct fw_unit { struct device device; const u32 *directory; struct fw_attribute_group attribute_group; }; static inline struct fw_unit *fw_unit(struct device *dev) { return container_of(dev, struct fw_unit, device); } static inline struct fw_unit *fw_unit_get(struct fw_unit *unit) { get_device(&unit->device); return unit; } static inline void fw_unit_put(struct fw_unit *unit) { put_device(&unit->device); } static inline struct fw_device *fw_parent_device(struct fw_unit *unit) { return fw_device(unit->device.parent); } struct ieee1394_device_id; struct fw_driver { struct device_driver driver; /* Called when the parent device sits through a bus reset. */ void (*update)(struct fw_unit *unit); const struct ieee1394_device_id *id_table; }; struct fw_packet; struct fw_request; typedef void (*fw_packet_callback_t)(struct fw_packet *packet, struct fw_card *card, int status); typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode, void *data, size_t length, void *callback_data); /* * This callback handles an inbound request subaction. It is called in * RCU read-side context, therefore must not sleep. * * The callback should not initiate outbound request subactions directly. * Otherwise there is a danger of recursion of inbound and outbound * transactions from and to the local node. * * The callback is responsible that either fw_send_response() or kfree() * is called on the @request, except for FCP registers for which the core * takes care of that. */ typedef void (*fw_address_callback_t)(struct fw_card *card, struct fw_request *request, int tcode, int destination, int source, int generation, unsigned long long offset, void *data, size_t length, void *callback_data); struct fw_packet { int speed; int generation; u32 header[4]; size_t header_length; void *payload; size_t payload_length; dma_addr_t payload_bus; bool payload_mapped; u32 timestamp; /* * This callback is called when the packet transmission has completed. * For successful transmission, the status code is the ack received * from the destination. Otherwise it is one of the juju-specific * rcodes: RCODE_SEND_ERROR, _CANCELLED, _BUSY, _GENERATION, _NO_ACK. * The callback can be called from tasklet context and thus * must never block. */ fw_packet_callback_t callback; int ack; struct list_head link; void *driver_data; }; struct fw_transaction { int node_id; /* The generation is implied; it is always the current. */ int tlabel; struct list_head link; struct fw_card *card; bool is_split_transaction; struct timer_list split_timeout_timer; struct fw_packet packet; /* * The data passed to the callback is valid only during the * callback. */ fw_transaction_callback_t callback; void *callback_data; }; struct fw_address_handler { u64 offset; u64 length; fw_address_callback_t address_callback; void *callback_data; struct list_head link; }; struct fw_address_region { u64 start; u64 end; }; extern const struct fw_address_region fw_high_memory_region; int fw_core_add_address_handler(struct fw_address_handler *handler, const struct fw_address_region *region); void fw_core_remove_address_handler(struct fw_address_handler *handler); void fw_send_response(struct fw_card *card, struct fw_request *request, int rcode); int fw_get_request_speed(struct fw_request *request); void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length, fw_transaction_callback_t callback, void *callback_data); int fw_cancel_transaction(struct fw_card *card, struct fw_transaction *transaction); int fw_run_transaction(struct fw_card *card, int tcode, int destination_id, int generation, int speed, unsigned long long offset, void *payload, size_t length); const char *fw_rcode_string(int rcode); static inline int fw_stream_packet_destination_id(int tag, int channel, int sy) { return tag << 14 | channel << 8 | sy; } struct fw_descriptor { struct list_head link; size_t length; u32 immediate; u32 key; const u32 *data; }; int fw_core_add_descriptor(struct fw_descriptor *desc); void fw_core_remove_descriptor(struct fw_descriptor *desc); /* * The iso packet format allows for an immediate header/payload part * stored in 'header' immediately after the packet info plus an * indirect payload part that is pointer to by the 'payload' field. * Applications can use one or the other or both to implement simple * low-bandwidth streaming (e.g. audio) or more advanced * scatter-gather streaming (e.g. assembling video frame automatically). */ struct fw_iso_packet { u16 payload_length; /* Length of indirect payload */ u32 interrupt:1; /* Generate interrupt on this packet */ u32 skip:1; /* tx: Set to not send packet at all */ /* rx: Sync bit, wait for matching sy */ u32 tag:2; /* tx: Tag in packet header */ u32 sy:4; /* tx: Sy in packet header */ u32 header_length:8; /* Length of immediate header */ u32 header[0]; /* tx: Top of 1394 isoch. data_block */ }; #define FW_ISO_CONTEXT_TRANSMIT 0 #define FW_ISO_CONTEXT_RECEIVE 1 #define FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL 2 #define FW_ISO_CONTEXT_MATCH_TAG0 1 #define FW_ISO_CONTEXT_MATCH_TAG1 2 #define FW_ISO_CONTEXT_MATCH_TAG2 4 #define FW_ISO_CONTEXT_MATCH_TAG3 8 #define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15 /* * An iso buffer is just a set of pages mapped for DMA in the * specified direction. Since the pages are to be used for DMA, they * are not mapped into the kernel virtual address space. We store the * DMA address in the page private. The helper function * fw_iso_buffer_map() will map the pages into a given vma. */ struct fw_iso_buffer { enum dma_data_direction direction; struct page **pages; int page_count; int page_count_mapped; }; int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card, int page_count, enum dma_data_direction direction); void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card); size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed); struct fw_iso_context; typedef void (*fw_iso_callback_t)(struct fw_iso_context *context, u32 cycle, size_t header_length, void *header, void *data); typedef void (*fw_iso_mc_callback_t)(struct fw_iso_context *context, dma_addr_t completed, void *data); struct fw_iso_context { struct fw_card *card; int type; int channel; int speed; bool drop_overflow_headers; size_t header_size; union { fw_iso_callback_t sc; fw_iso_mc_callback_t mc; } callback; void *callback_data; }; struct fw_iso_context *fw_iso_context_create(struct fw_card *card, int type, int channel, int speed, size_t header_size, fw_iso_callback_t callback, void *callback_data); int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels); int fw_iso_context_queue(struct fw_iso_context *ctx, struct fw_iso_packet *packet, struct fw_iso_buffer *buffer, unsigned long payload); void fw_iso_context_queue_flush(struct fw_iso_context *ctx); int fw_iso_context_flush_completions(struct fw_iso_context *ctx); int fw_iso_context_start(struct fw_iso_context *ctx, int cycle, int sync, int tags); int fw_iso_context_stop(struct fw_iso_context *ctx); void fw_iso_context_destroy(struct fw_iso_context *ctx); void fw_iso_resource_manage(struct fw_card *card, int generation, u64 channels_mask, int *channel, int *bandwidth, bool allocate); extern struct workqueue_struct *fw_workqueue; #endif /* _LINUX_FIREWIRE_H */