GIF89a;
Direktori : /usr/lib/modules/3.10.0-1160.88.1.el7.centos.plus.x86_64/build/include/linux/ |
Current File : //usr/lib/modules/3.10.0-1160.88.1.el7.centos.plus.x86_64/build/include/linux/mempolicy.h |
/* * NUMA memory policies for Linux. * Copyright 2003,2004 Andi Kleen SuSE Labs */ #ifndef _LINUX_MEMPOLICY_H #define _LINUX_MEMPOLICY_H 1 #include <linux/mmzone.h> #include <linux/dax.h> #include <linux/slab.h> #include <linux/rbtree.h> #include <linux/spinlock.h> #include <linux/nodemask.h> #include <linux/pagemap.h> #include <uapi/linux/mempolicy.h> struct mm_struct; #ifdef CONFIG_NUMA /* * Describe a memory policy. * * A mempolicy can be either associated with a process or with a VMA. * For VMA related allocations the VMA policy is preferred, otherwise * the process policy is used. Interrupts ignore the memory policy * of the current process. * * Locking policy for interlave: * In process context there is no locking because only the process accesses * its own state. All vma manipulation is somewhat protected by a down_read on * mmap_sem. * * Freeing policy: * Mempolicy objects are reference counted. A mempolicy will be freed when * mpol_put() decrements the reference count to zero. * * Duplicating policy objects: * mpol_dup() allocates a new mempolicy and copies the specified mempolicy * to the new storage. The reference count of the new object is initialized * to 1, representing the caller of mpol_dup(). */ struct mempolicy { atomic_t refcnt; unsigned short mode; /* See MPOL_* above */ unsigned short flags; /* See set_mempolicy() MPOL_F_* above */ union { short preferred_node; /* preferred */ nodemask_t nodes; /* interleave/bind */ /* undefined for default */ } v; union { nodemask_t cpuset_mems_allowed; /* relative to these nodes */ nodemask_t user_nodemask; /* nodemask passed by user */ } w; }; /* * Support for managing mempolicy data objects (clone, copy, destroy) * The default fast path of a NULL MPOL_DEFAULT policy is always inlined. */ extern void __mpol_put(struct mempolicy *pol); static inline void mpol_put(struct mempolicy *pol) { if (pol) __mpol_put(pol); } /* * Does mempolicy pol need explicit unref after use? * Currently only needed for shared policies. */ static inline int mpol_needs_cond_ref(struct mempolicy *pol) { return (pol && (pol->flags & MPOL_F_SHARED)); } static inline void mpol_cond_put(struct mempolicy *pol) { if (mpol_needs_cond_ref(pol)) __mpol_put(pol); } extern struct mempolicy *__mpol_dup(struct mempolicy *pol); static inline struct mempolicy *mpol_dup(struct mempolicy *pol) { if (pol) pol = __mpol_dup(pol); return pol; } #define vma_policy(vma) ((vma)->vm_policy) static inline void mpol_get(struct mempolicy *pol) { if (pol) atomic_inc(&pol->refcnt); } extern bool __mpol_equal(struct mempolicy *a, struct mempolicy *b); static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { if (a == b) return true; return __mpol_equal(a, b); } /* * Tree of shared policies for a shared memory region. * Maintain the policies in a pseudo mm that contains vmas. The vmas * carry the policy. As a special twist the pseudo mm is indexed in pages, not * bytes, so that we can work with shared memory segments bigger than * unsigned long. */ struct sp_node { struct rb_node nd; unsigned long start, end; struct mempolicy *policy; }; struct shared_policy { struct rb_root root; rwlock_t lock; }; int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst); void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol); int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new); void mpol_free_shared_policy(struct shared_policy *p); struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx); struct mempolicy *get_task_policy(struct task_struct *p); struct mempolicy *__get_vma_policy(struct vm_area_struct *vma, unsigned long addr); bool vma_policy_mof(struct vm_area_struct *vma); extern void numa_default_policy(void); extern void numa_policy_init(void); extern void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, enum mpol_rebind_step step); extern void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new); extern void mpol_fix_fork_child_flag(struct task_struct *p); extern struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask); extern bool init_nodemask_of_mempolicy(nodemask_t *mask); extern bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask); extern unsigned slab_node(void); extern enum zone_type policy_zone; static inline void check_highest_zone(enum zone_type k) { if (k > policy_zone && k != ZONE_MOVABLE) policy_zone = k; } int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags); #ifdef CONFIG_TMPFS extern int mpol_parse_str(char *str, struct mempolicy **mpol); #endif extern int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol); /* Check if a vma is migratable */ static inline int vma_migratable(struct vm_area_struct *vma) { if (vma->vm_flags & (VM_IO | VM_PFNMAP)) return 0; /* * DAX device mappings require predictable access latency, so avoid * incurring periodic faults. */ if (vma_is_dax(vma)) return false; #ifndef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION if (vma->vm_flags & VM_HUGETLB) return 0; #endif /* * Migration allocates pages in the highest zone. If we cannot * do so then migration (at least from node to node) is not * possible. */ if (vma->vm_file && gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping)) < policy_zone) return 0; return 1; } extern int mpol_misplaced(struct page *, struct vm_area_struct *, unsigned long); extern void mpol_put_task_policy(struct task_struct *); #else struct mempolicy {}; static inline bool mpol_equal(struct mempolicy *a, struct mempolicy *b) { return true; } static inline void mpol_put(struct mempolicy *p) { } static inline void mpol_cond_put(struct mempolicy *pol) { } static inline void mpol_get(struct mempolicy *pol) { } static inline struct mempolicy *mpol_dup(struct mempolicy *old) { return NULL; } struct shared_policy {}; static inline int mpol_set_shared_policy(struct shared_policy *info, struct vm_area_struct *vma, struct mempolicy *new) { return -EINVAL; } static inline void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol) { } static inline void mpol_free_shared_policy(struct shared_policy *p) { } static inline struct mempolicy * mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx) { return NULL; } #define vma_policy(vma) NULL static inline int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) { return 0; } static inline void numa_policy_init(void) { } static inline void numa_default_policy(void) { } static inline void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new, enum mpol_rebind_step step) { } static inline void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new) { } static inline void mpol_fix_fork_child_flag(struct task_struct *p) { } static inline struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags, struct mempolicy **mpol, nodemask_t **nodemask) { *mpol = NULL; *nodemask = NULL; return node_zonelist(0, gfp_flags); } static inline bool init_nodemask_of_mempolicy(nodemask_t *m) { return false; } static inline bool mempolicy_nodemask_intersects(struct task_struct *tsk, const nodemask_t *mask) { return false; } static inline int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from, const nodemask_t *to, int flags) { return 0; } static inline void check_highest_zone(int k) { } #ifdef CONFIG_TMPFS static inline int mpol_parse_str(char *str, struct mempolicy **mpol) { return 1; /* error */ } #endif static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol) { return 0; } static inline int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long address) { return -1; /* no node preference */ } static inline void mpol_put_task_policy(struct task_struct *task) { } #endif /* CONFIG_NUMA */ #endif