GIF89a;
Direktori : /opt/cpanel/ea-openssl11/share/man/man3/ |
Current File : //opt/cpanel/ea-openssl11/share/man/man3/BN_to_ASN1_ENUMERATED.3 |
.\" Automatically generated by Pod::Man 2.27 (Pod::Simple 3.28) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp .. .de Vb \" Begin verbatim text .ft CW .nf .ne \\$1 .. .de Ve \" End verbatim text .ft R .fi .. .\" Set up some character translations and predefined strings. \*(-- will .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left .\" double quote, and \*(R" will give a right double quote. \*(C+ will .\" give a nicer C++. Capital omega is used to do unbreakable dashes and .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, .\" nothing in troff, for use with C<>. .tr \(*W- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' .ie n \{\ . ds -- \(*W- . ds PI pi . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch . ds L" "" . ds R" "" . ds C` "" . ds C' "" 'br\} .el\{\ . ds -- \|\(em\| . ds PI \(*p . ds L" `` . ds R" '' . ds C` . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. .ie \n(.g .ds Aq \(aq .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. .\" .\" Avoid warning from groff about undefined register 'F'. .de IX .. .nr rF 0 .if \n(.g .if rF .nr rF 1 .if (\n(rF:(\n(.g==0)) \{ . if \nF \{ . de IX . tm Index:\\$1\t\\n%\t"\\$2" .. . if !\nF==2 \{ . nr % 0 . nr F 2 . \} . \} .\} .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. . \" fudge factors for nroff and troff .if n \{\ . ds #H 0 . ds #V .8m . ds #F .3m . ds #[ \f1 . ds #] \fP .\} .if t \{\ . ds #H ((1u-(\\\\n(.fu%2u))*.13m) . ds #V .6m . ds #F 0 . ds #[ \& . ds #] \& .\} . \" simple accents for nroff and troff .if n \{\ . ds ' \& . ds ` \& . ds ^ \& . ds , \& . ds ~ ~ . ds / .\} .if t \{\ . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' .\} . \" troff and (daisy-wheel) nroff accents .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' .ds 8 \h'\*(#H'\(*b\h'-\*(#H' .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] .ds ae a\h'-(\w'a'u*4/10)'e .ds Ae A\h'-(\w'A'u*4/10)'E . \" corrections for vroff .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' . \" for low resolution devices (crt and lpr) .if \n(.H>23 .if \n(.V>19 \ \{\ . ds : e . ds 8 ss . ds o a . ds d- d\h'-1'\(ga . ds D- D\h'-1'\(hy . ds th \o'bp' . ds Th \o'LP' . ds ae ae . ds Ae AE .\} .rm #[ #] #H #V #F C .\" ======================================================================== .\" .IX Title "ASN1_INTEGER_GET_INT64 3" .TH ASN1_INTEGER_GET_INT64 3 "2023-09-11" "1.1.1w" "OpenSSL" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l .nh .SH "NAME" ASN1_INTEGER_get_uint64, ASN1_INTEGER_set_uint64, ASN1_INTEGER_get_int64, ASN1_INTEGER_get, ASN1_INTEGER_set_int64, ASN1_INTEGER_set, BN_to_ASN1_INTEGER, ASN1_INTEGER_to_BN, ASN1_ENUMERATED_get_int64, ASN1_ENUMERATED_get, ASN1_ENUMERATED_set_int64, ASN1_ENUMERATED_set, BN_to_ASN1_ENUMERATED, ASN1_ENUMERATED_to_BN \&\- ASN.1 INTEGER and ENUMERATED utilities .SH "SYNOPSIS" .IX Header "SYNOPSIS" .Vb 1 \& #include <openssl/asn1.h> \& \& int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a); \& long ASN1_INTEGER_get(const ASN1_INTEGER *a); \& \& int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r); \& int ASN1_INTEGER_set(const ASN1_INTEGER *a, long v); \& \& int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a); \& int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r); \& \& ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai); \& BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn); \& \& int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a); \& long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a); \& \& int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r); \& int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v); \& \& ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai); \& BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai, BIGNUM *bn); .Ve .SH "DESCRIPTION" .IX Header "DESCRIPTION" These functions convert to and from \fB\s-1ASN1_INTEGER\s0\fR and \fB\s-1ASN1_ENUMERATED\s0\fR structures. .PP \&\fIASN1_INTEGER_get_int64()\fR converts an \fB\s-1ASN1_INTEGER\s0\fR into an \fBint64_t\fR type If successful it returns 1 and sets \fB*pr\fR to the value of \fBa\fR. If it fails (due to invalid type or the value being too big to fit into an \fBint64_t\fR type) it returns 0. .PP \&\fIASN1_INTEGER_get_uint64()\fR is similar to \fIASN1_INTEGER_get_int64_t()\fR except it converts to a \fBuint64_t\fR type and an error is returned if the passed integer is negative. .PP \&\fIASN1_INTEGER_get()\fR also returns the value of \fBa\fR but it returns 0 if \fBa\fR is \&\s-1NULL\s0 and \-1 on error (which is ambiguous because \-1 is a legitimate value for an \fB\s-1ASN1_INTEGER\s0\fR). New applications should use \fIASN1_INTEGER_get_int64()\fR instead. .PP \&\fIASN1_INTEGER_set_int64()\fR sets the value of \fB\s-1ASN1_INTEGER\s0\fR \fBa\fR to the \&\fBint64_t\fR value \fBr\fR. .PP \&\fIASN1_INTEGER_set_uint64()\fR sets the value of \fB\s-1ASN1_INTEGER\s0\fR \fBa\fR to the \&\fBuint64_t\fR value \fBr\fR. .PP \&\fIASN1_INTEGER_set()\fR sets the value of \fB\s-1ASN1_INTEGER\s0\fR \fBa\fR to the \fBlong\fR value \&\fBv\fR. .PP \&\fIBN_to_ASN1_INTEGER()\fR converts \fB\s-1BIGNUM\s0\fR \fBbn\fR to an \fB\s-1ASN1_INTEGER\s0\fR. If \fBai\fR is \s-1NULL\s0 a new \fB\s-1ASN1_INTEGER\s0\fR structure is returned. If \fBai\fR is not \s-1NULL\s0 then the existing structure will be used instead. .PP \&\fIASN1_INTEGER_to_BN()\fR converts \s-1ASN1_INTEGER \s0\fBai\fR into a \fB\s-1BIGNUM\s0\fR. If \fBbn\fR is \&\s-1NULL\s0 a new \fB\s-1BIGNUM\s0\fR structure is returned. If \fBbn\fR is not \s-1NULL\s0 then the existing structure will be used instead. .PP \&\fIASN1_ENUMERATED_get_int64()\fR, \fIASN1_ENUMERATED_set_int64()\fR, \&\fIASN1_ENUMERATED_set()\fR, \fIBN_to_ASN1_ENUMERATED()\fR and \fIASN1_ENUMERATED_to_BN()\fR behave in an identical way to their \s-1ASN1_INTEGER\s0 counterparts except they operate on an \fB\s-1ASN1_ENUMERATED\s0\fR value. .PP \&\fIASN1_ENUMERATED_get()\fR returns the value of \fBa\fR in a similar way to \&\fIASN1_INTEGER_get()\fR but it returns \fB0xffffffffL\fR if the value of \fBa\fR will not fit in a long type. New applications should use \fIASN1_ENUMERATED_get_int64()\fR instead. .SH "NOTES" .IX Header "NOTES" In general an \fB\s-1ASN1_INTEGER\s0\fR or \fB\s-1ASN1_ENUMERATED\s0\fR type can contain an integer of almost arbitrary size and so cannot always be represented by a C \&\fBint64_t\fR type. However, in many cases (for example version numbers) they represent small integers which can be more easily manipulated if converted to an appropriate C integer type. .SH "BUGS" .IX Header "BUGS" The ambiguous return values of \fIASN1_INTEGER_get()\fR and \fIASN1_ENUMERATED_get()\fR mean these functions should be avoided if possible. They are retained for compatibility. Normally the ambiguous return values are not legitimate values for the fields they represent. .SH "RETURN VALUES" .IX Header "RETURN VALUES" \&\fIASN1_INTEGER_set_int64()\fR, \fIASN1_INTEGER_set()\fR, \fIASN1_ENUMERATED_set_int64()\fR and \&\fIASN1_ENUMERATED_set()\fR return 1 for success and 0 for failure. They will only fail if a memory allocation error occurs. .PP \&\fIASN1_INTEGER_get_int64()\fR and \fIASN1_ENUMERATED_get_int64()\fR return 1 for success and 0 for failure. They will fail if the passed type is incorrect (this will only happen if there is a programming error) or if the value exceeds the range of an \fBint64_t\fR type. .PP \&\fIBN_to_ASN1_INTEGER()\fR and \fIBN_to_ASN1_ENUMERATED()\fR return an \fB\s-1ASN1_INTEGER\s0\fR or \&\fB\s-1ASN1_ENUMERATED\s0\fR structure respectively or \s-1NULL\s0 if an error occurs. They will only fail due to a memory allocation error. .PP \&\fIASN1_INTEGER_to_BN()\fR and \fIASN1_ENUMERATED_to_BN()\fR return a \fB\s-1BIGNUM\s0\fR structure of \s-1NULL\s0 if an error occurs. They can fail if the passed type is incorrect (due to programming error) or due to a memory allocation failure. .SH "SEE ALSO" .IX Header "SEE ALSO" \&\fIERR_get_error\fR\|(3) .SH "HISTORY" .IX Header "HISTORY" \&\fIASN1_INTEGER_set_int64()\fR, \fIASN1_INTEGER_get_int64()\fR, \&\fIASN1_ENUMERATED_set_int64()\fR and \fIASN1_ENUMERATED_get_int64()\fR were added in OpenSSL 1.1.0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright 2015\-2020 The OpenSSL Project Authors. All Rights Reserved. .PP Licensed under the OpenSSL license (the \*(L"License\*(R"). You may not use this file except in compliance with the License. You can obtain a copy in the file \s-1LICENSE\s0 in the source distribution or at <https://www.openssl.org/source/license.html>.