GIF89a;
Direktori : /lib/modules/3.10.0-957.21.3.el7.centos.plus.x86_64/source/include/linux/ |
Current File : //lib/modules/3.10.0-957.21.3.el7.centos.plus.x86_64/source/include/linux/fs.h |
#ifndef _LINUX_FS_H #define _LINUX_FS_H #include <linux/linkage.h> #include <linux/wait.h> #include <linux/kdev_t.h> #include <linux/dcache.h> #include <linux/path.h> #include <linux/stat.h> #include <linux/cache.h> #include <linux/list.h> #include <linux/radix-tree.h> #include <linux/rbtree.h> #include <linux/init.h> #include <linux/pid.h> #include <linux/bug.h> #include <linux/mutex.h> #include <linux/capability.h> #include <linux/semaphore.h> #include <linux/fiemap.h> #include <linux/rculist_bl.h> #include <linux/atomic.h> #include <linux/shrinker.h> #include <linux/migrate_mode.h> #include <linux/uidgid.h> #include <linux/lockdep.h> #include <linux/percpu-rwsem.h> #include <linux/blk_types.h> #include <asm/byteorder.h> #include <uapi/linux/fs.h> #include <linux/rh_kabi.h> #ifndef __GENKSYMS__ #include <linux/mm_types.h> #endif struct export_operations; struct hd_geometry; struct iovec; struct nameidata; struct kiocb; struct kobject; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct vm_area_struct; struct vfsmount; struct cred; struct swap_info_struct; struct seq_file; struct workqueue_struct; extern void __init inode_init(void); extern void __init inode_init_early(void); extern void __init files_init(void); extern void __init files_maxfiles_init(void); extern struct files_stat_struct files_stat; extern unsigned long get_max_files(void); extern int sysctl_nr_open; extern struct inodes_stat_t inodes_stat; extern int leases_enable, lease_break_time; extern int sysctl_protected_symlinks; extern int sysctl_protected_hardlinks; struct buffer_head; typedef int (get_block_t)(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create); typedef void (dio_iodone_t)(struct kiocb *iocb, loff_t offset, ssize_t bytes, void *private, int ret, bool is_async); #define MAY_EXEC 0x00000001 #define MAY_WRITE 0x00000002 #define MAY_READ 0x00000004 #define MAY_APPEND 0x00000008 #define MAY_ACCESS 0x00000010 #define MAY_OPEN 0x00000020 #define MAY_CHDIR 0x00000040 /* called from RCU mode, don't block */ #define MAY_NOT_BLOCK 0x00000080 /* * flags in file.f_mode. Note that FMODE_READ and FMODE_WRITE must correspond * to O_WRONLY and O_RDWR via the strange trick in __dentry_open() */ /* file is open for reading */ #define FMODE_READ ((__force fmode_t)0x1) /* file is open for writing */ #define FMODE_WRITE ((__force fmode_t)0x2) /* file is seekable */ #define FMODE_LSEEK ((__force fmode_t)0x4) /* file can be accessed using pread */ #define FMODE_PREAD ((__force fmode_t)0x8) /* file can be accessed using pwrite */ #define FMODE_PWRITE ((__force fmode_t)0x10) /* File is opened for execution with sys_execve / sys_uselib */ #define FMODE_EXEC ((__force fmode_t)0x20) /* File is opened with O_NDELAY (only set for block devices) */ #define FMODE_NDELAY ((__force fmode_t)0x40) /* File is opened with O_EXCL (only set for block devices) */ #define FMODE_EXCL ((__force fmode_t)0x80) /* File is opened using open(.., 3, ..) and is writeable only for ioctls (specialy hack for floppy.c) */ #define FMODE_WRITE_IOCTL ((__force fmode_t)0x100) /* 32bit hashes as llseek() offset (for directories) */ #define FMODE_32BITHASH ((__force fmode_t)0x200) /* 64bit hashes as llseek() offset (for directories) */ #define FMODE_64BITHASH ((__force fmode_t)0x400) /* * Don't update ctime and mtime. * * Currently a special hack for the XFS open_by_handle ioctl, but we'll * hopefully graduate it to a proper O_CMTIME flag supported by open(2) soon. */ #define FMODE_NOCMTIME ((__force fmode_t)0x800) /* Expect random access pattern */ #define FMODE_RANDOM ((__force fmode_t)0x1000) /* File is huge (eg. /dev/kmem): treat loff_t as unsigned */ #define FMODE_UNSIGNED_OFFSET ((__force fmode_t)0x2000) /* File is opened with O_PATH; almost nothing can be done with it */ #define FMODE_PATH ((__force fmode_t)0x4000) /* File needs atomic accesses to f_pos */ #define FMODE_ATOMIC_POS ((__force fmode_t)0x8000) /* File was opened by fanotify and shouldn't generate fanotify events */ #define FMODE_NONOTIFY ((__force fmode_t)0x1000000) /* The extended KABI iterate method in struct file_operations is present */ #define FMODE_KABI_ITERATE ((__force fmode_t)0x80000000) /* * Flag for rw_copy_check_uvector and compat_rw_copy_check_uvector * that indicates that they should check the contents of the iovec are * valid, but not check the memory that the iovec elements * points too. */ #define CHECK_IOVEC_ONLY -1 /* * The below are the various read and write types that we support. Some of * them include behavioral modifiers that send information down to the * block layer and IO scheduler. Terminology: * * The block layer uses device plugging to defer IO a little bit, in * the hope that we will see more IO very shortly. This increases * coalescing of adjacent IO and thus reduces the number of IOs we * have to send to the device. It also allows for better queuing, * if the IO isn't mergeable. If the caller is going to be waiting * for the IO, then he must ensure that the device is unplugged so * that the IO is dispatched to the driver. * * All IO is handled async in Linux. This is fine for background * writes, but for reads or writes that someone waits for completion * on, we want to notify the block layer and IO scheduler so that they * know about it. That allows them to make better scheduling * decisions. So when the below references 'sync' and 'async', it * is referencing this priority hint. * * With that in mind, the available types are: * * READ A normal read operation. Device will be plugged. * READ_SYNC A synchronous read. Device is not plugged, caller can * immediately wait on this read without caring about * unplugging. * READA Used for read-ahead operations. Lower priority, and the * block layer could (in theory) choose to ignore this * request if it runs into resource problems. * WRITE A normal async write. Device will be plugged. * WRITE_SYNC Synchronous write. Identical to WRITE, but passes down * the hint that someone will be waiting on this IO * shortly. The write equivalent of READ_SYNC. * WRITE_ODIRECT Special case write for O_DIRECT only. * WRITE_FLUSH Like WRITE_SYNC but with preceding cache flush. * WRITE_FUA Like WRITE_SYNC but data is guaranteed to be on * non-volatile media on completion. * WRITE_FLUSH_FUA Combination of WRITE_FLUSH and FUA. The IO is preceded * by a cache flush and data is guaranteed to be on * non-volatile media on completion. * */ #define RW_MASK REQ_WRITE #define RWA_MASK REQ_RAHEAD #define READ 0 #define WRITE RW_MASK #define READA RWA_MASK #define KERNEL_READ (READ|REQ_KERNEL) #define KERNEL_WRITE (WRITE|REQ_KERNEL) #define READ_SYNC (READ | REQ_SYNC) #define WRITE_SYNC (WRITE | REQ_SYNC | REQ_NOIDLE) #define WRITE_ODIRECT (WRITE | REQ_SYNC) #define WRITE_FLUSH (WRITE | REQ_SYNC | REQ_NOIDLE | REQ_FLUSH) #define WRITE_FUA (WRITE | REQ_SYNC | REQ_NOIDLE | REQ_FUA) #define WRITE_FLUSH_FUA (WRITE | REQ_SYNC | REQ_NOIDLE | REQ_FLUSH | REQ_FUA) /* * Attribute flags. These should be or-ed together to figure out what * has been changed! */ #define ATTR_MODE (1 << 0) #define ATTR_UID (1 << 1) #define ATTR_GID (1 << 2) #define ATTR_SIZE (1 << 3) #define ATTR_ATIME (1 << 4) #define ATTR_MTIME (1 << 5) #define ATTR_CTIME (1 << 6) #define ATTR_ATIME_SET (1 << 7) #define ATTR_MTIME_SET (1 << 8) #define ATTR_FORCE (1 << 9) /* Not a change, but a change it */ #define ATTR_ATTR_FLAG (1 << 10) #define ATTR_KILL_SUID (1 << 11) #define ATTR_KILL_SGID (1 << 12) #define ATTR_FILE (1 << 13) #define ATTR_KILL_PRIV (1 << 14) #define ATTR_OPEN (1 << 15) /* Truncating from open(O_TRUNC) */ #define ATTR_TIMES_SET (1 << 16) #define ATTR_TOUCH (1 << 17) /* * Whiteout is represented by a char device. The following constants define the * mode and device number to use. */ #define WHITEOUT_MODE 0 #define WHITEOUT_DEV 0 /* * This is the Inode Attributes structure, used for notify_change(). It * uses the above definitions as flags, to know which values have changed. * Also, in this manner, a Filesystem can look at only the values it cares * about. Basically, these are the attributes that the VFS layer can * request to change from the FS layer. * * Derek Atkins <warlord@MIT.EDU> 94-10-20 */ struct iattr { unsigned int ia_valid; umode_t ia_mode; kuid_t ia_uid; kgid_t ia_gid; loff_t ia_size; struct timespec ia_atime; struct timespec ia_mtime; struct timespec ia_ctime; /* * Not an attribute, but an auxiliary info for filesystems wanting to * implement an ftruncate() like method. NOTE: filesystem should * check for (ia_valid & ATTR_FILE), and not for (ia_file != NULL). */ struct file *ia_file; }; /* * Includes for diskquotas. */ #include <linux/quota.h> /* * Maximum number of layers of fs stack. Needs to be limited to * prevent kernel stack overflow */ #define FILESYSTEM_MAX_STACK_DEPTH 2 /** * enum positive_aop_returns - aop return codes with specific semantics * * @AOP_WRITEPAGE_ACTIVATE: Informs the caller that page writeback has * completed, that the page is still locked, and * should be considered active. The VM uses this hint * to return the page to the active list -- it won't * be a candidate for writeback again in the near * future. Other callers must be careful to unlock * the page if they get this return. Returned by * writepage(); * * @AOP_TRUNCATED_PAGE: The AOP method that was handed a locked page has * unlocked it and the page might have been truncated. * The caller should back up to acquiring a new page and * trying again. The aop will be taking reasonable * precautions not to livelock. If the caller held a page * reference, it should drop it before retrying. Returned * by readpage(). * * address_space_operation functions return these large constants to indicate * special semantics to the caller. These are much larger than the bytes in a * page to allow for functions that return the number of bytes operated on in a * given page. */ enum positive_aop_returns { AOP_WRITEPAGE_ACTIVATE = 0x80000, AOP_TRUNCATED_PAGE = 0x80001, }; #define AOP_FLAG_UNINTERRUPTIBLE 0x0001 /* will not do a short write */ #define AOP_FLAG_CONT_EXPAND 0x0002 /* called from cont_expand */ #define AOP_FLAG_NOFS 0x0004 /* used by filesystem to direct * helper code (eg buffer layer) * to clear GFP_FS from alloc */ /* * oh the beauties of C type declarations. */ struct page; struct address_space; struct writeback_control; struct iov_iter { const struct iovec *iov; unsigned long nr_segs; size_t iov_offset; size_t count; }; size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes); size_t iov_iter_copy_from_user(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes); void iov_iter_advance(struct iov_iter *i, size_t bytes); int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes); size_t iov_iter_single_seg_count(const struct iov_iter *i); size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i); static inline void iov_iter_init(struct iov_iter *i, const struct iovec *iov, unsigned long nr_segs, size_t count, size_t written) { i->iov = iov; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count + written; iov_iter_advance(i, written); } static inline size_t iov_iter_count(struct iov_iter *i) { return i->count; } static inline void iov_iter_truncate(struct iov_iter *i, size_t count) { if (i->count > count) i->count = count; } /* * "descriptor" for what we're up to with a read. * This allows us to use the same read code yet * have multiple different users of the data that * we read from a file. * * The simplest case just copies the data to user * mode. */ typedef struct { size_t written; size_t count; union { char __user *buf; void *data; } arg; int error; } read_descriptor_t; typedef int (*read_actor_t)(read_descriptor_t *, struct page *, unsigned long, unsigned long); struct address_space_operations { int (*writepage)(struct page *page, struct writeback_control *wbc); int (*readpage)(struct file *, struct page *); /* Write back some dirty pages from this mapping. */ int (*writepages)(struct address_space *, struct writeback_control *); /* Set a page dirty. Return true if this dirtied it */ int (*set_page_dirty)(struct page *page); int (*readpages)(struct file *filp, struct address_space *mapping, struct list_head *pages, unsigned nr_pages); int (*write_begin)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int (*write_end)(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); /* Unfortunately this kludge is needed for FIBMAP. Don't use it */ sector_t (*bmap)(struct address_space *, sector_t); void (*invalidatepage) (struct page *, unsigned long); int (*releasepage) (struct page *, gfp_t); void (*freepage)(struct page *); ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov, loff_t offset, unsigned long nr_segs); RH_KABI_DEPRECATE_FN(int, get_xip_mem, struct address_space *, pgoff_t, int, void **, unsigned long *) /* * migrate the contents of a page to the specified target. If sync * is false, it must not block. */ int (*migratepage) (struct address_space *, struct page *, struct page *, enum migrate_mode); int (*launder_page) (struct page *); int (*is_partially_uptodate) (struct page *, read_descriptor_t *, unsigned long); void (*is_dirty_writeback) (struct page *, bool *, bool *); int (*error_remove_page)(struct address_space *, struct page *); /* swapfile support */ int (*swap_activate)(struct swap_info_struct *sis, struct file *file, sector_t *span); void (*swap_deactivate)(struct file *file); #ifndef __GENKSYMS__ void (*invalidatepage_range) (struct page *, unsigned int, unsigned int); #endif }; extern const struct address_space_operations empty_aops; /* * pagecache_write_begin/pagecache_write_end must be used by general code * to write into the pagecache. */ int pagecache_write_begin(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); int pagecache_write_end(struct file *, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); struct backing_dev_info; struct address_space { struct inode *host; /* owner: inode, block_device */ struct radix_tree_root page_tree; /* radix tree of all pages */ spinlock_t tree_lock; /* and lock protecting it */ RH_KABI_REPLACE(unsigned int i_mmap_writable, atomic_t i_mmap_writable) /* count VM_SHARED mappings */ struct rb_root i_mmap; /* tree of private and shared mappings */ struct list_head i_mmap_nonlinear;/*list VM_NONLINEAR mappings */ struct mutex i_mmap_mutex; /* protect tree, count, list */ /* Protected by tree_lock together with the radix tree */ unsigned long nrpages; /* number of total pages */ /* number of shadow or DAX exceptional entries */ RH_KABI_RENAME(unsigned long nrshadows, unsigned long nrexceptional); pgoff_t writeback_index;/* writeback starts here */ const struct address_space_operations *a_ops; /* methods */ unsigned long flags; /* error bits/gfp mask */ struct backing_dev_info *backing_dev_info; /* device readahead, etc */ spinlock_t private_lock; /* for use by the address_space */ struct list_head private_list; /* ditto */ void *private_data; /* ditto */ } __attribute__((aligned(sizeof(long)))); /* * On most architectures that alignment is already the case; but * must be enforced here for CRIS, to let the least significant bit * of struct page's "mapping" pointer be used for PAGE_MAPPING_ANON. */ struct request_queue; struct block_device { dev_t bd_dev; /* not a kdev_t - it's a search key */ int bd_openers; struct inode * bd_inode; /* will die */ struct super_block * bd_super; struct mutex bd_mutex; /* open/close mutex */ struct list_head bd_inodes; void * bd_claiming; void * bd_holder; int bd_holders; bool bd_write_holder; #ifdef CONFIG_SYSFS struct list_head bd_holder_disks; #endif struct block_device * bd_contains; unsigned bd_block_size; struct hd_struct * bd_part; /* number of times partitions within this device have been opened. */ unsigned bd_part_count; int bd_invalidated; struct gendisk * bd_disk; struct request_queue * bd_queue; struct list_head bd_list; /* * Private data. You must have bd_claim'ed the block_device * to use this. NOTE: bd_claim allows an owner to claim * the same device multiple times, the owner must take special * care to not mess up bd_private for that case. */ unsigned long bd_private; /* The counter of freeze processes */ int bd_fsfreeze_count; /* Mutex for freeze */ struct mutex bd_fsfreeze_mutex; }; /* * Radix-tree tags, for tagging dirty and writeback pages within the pagecache * radix trees */ #define PAGECACHE_TAG_DIRTY 0 #define PAGECACHE_TAG_WRITEBACK 1 #define PAGECACHE_TAG_TOWRITE 2 int mapping_tagged(struct address_space *mapping, int tag); /* * Might pages of this file be mapped into userspace? */ static inline int mapping_mapped(struct address_space *mapping) { return !RB_EMPTY_ROOT(&mapping->i_mmap) || !list_empty(&mapping->i_mmap_nonlinear); } /* * Might pages of this file have been modified in userspace? * Note that i_mmap_writable counts all VM_SHARED vmas: do_mmap_pgoff * marks vma as VM_SHARED if it is shared, and the file was opened for * writing i.e. vma may be mprotected writable even if now readonly. * * If i_mmap_writable is negative, no new writable mappings are allowed. You * can only deny writable mappings, if none exists right now. */ static inline int mapping_writably_mapped(struct address_space *mapping) { return atomic_read(&mapping->i_mmap_writable) > 0; } static inline int mapping_map_writable(struct address_space *mapping) { return atomic_inc_unless_negative(&mapping->i_mmap_writable) ? 0 : -EPERM; } static inline void mapping_unmap_writable(struct address_space *mapping) { atomic_dec(&mapping->i_mmap_writable); } static inline int mapping_deny_writable(struct address_space *mapping) { return atomic_dec_unless_positive(&mapping->i_mmap_writable) ? 0 : -EBUSY; } static inline void mapping_allow_writable(struct address_space *mapping) { atomic_inc(&mapping->i_mmap_writable); } /* * Use sequence counter to get consistent i_size on 32-bit processors. */ #if BITS_PER_LONG==32 && defined(CONFIG_SMP) #include <linux/seqlock.h> #define __NEED_I_SIZE_ORDERED #define i_size_ordered_init(inode) seqcount_init(&inode->i_size_seqcount) #else #define i_size_ordered_init(inode) do { } while (0) #endif struct posix_acl; #define ACL_NOT_CACHED ((void *)(-1)) #define IOP_FASTPERM 0x0001 #define IOP_LOOKUP 0x0002 #define IOP_NOFOLLOW 0x0004 struct fsnotify_mark_connector; /* * Keep mostly read-only and often accessed (especially for * the RCU path lookup and 'stat' data) fields at the beginning * of the 'struct inode' */ struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; #ifdef CONFIG_FS_POSIX_ACL struct posix_acl *i_acl; struct posix_acl *i_default_acl; #endif const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; #ifdef CONFIG_SECURITY void *i_security; #endif /* Stat data, not accessed from path walking */ unsigned long i_ino; /* * Filesystems may only read i_nlink directly. They shall use the * following functions for modification: * * (set|clear|inc|drop)_nlink * inode_(inc|dec)_link_count */ union { const unsigned int i_nlink; unsigned int __i_nlink; }; dev_t i_rdev; loff_t i_size; struct timespec i_atime; struct timespec i_mtime; struct timespec i_ctime; spinlock_t i_lock; /* i_blocks, i_bytes, maybe i_size */ unsigned short i_bytes; unsigned int i_blkbits; blkcnt_t i_blocks; #ifdef __NEED_I_SIZE_ORDERED seqcount_t i_size_seqcount; #endif /* Misc */ unsigned long i_state; struct mutex i_mutex; unsigned long dirtied_when; /* jiffies of first dirtying */ struct hlist_node i_hash; RH_KABI_RENAME(struct list_head i_wb_list, struct list_head i_io_list); /* backing dev IO list */ struct list_head i_lru; /* inode LRU list */ struct list_head i_sb_list; union { struct hlist_head i_dentry; struct rcu_head i_rcu; }; u64 i_version; atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; const struct file_operations *i_fop; /* former ->i_op->default_file_ops */ struct file_lock *i_flock; struct address_space i_data; #ifdef CONFIG_QUOTA struct dquot *i_dquot[MAXQUOTAS]; #endif struct list_head i_devices; union { struct pipe_inode_info *i_pipe; struct block_device *i_bdev; struct cdev *i_cdev; }; __u32 i_generation; #ifdef CONFIG_FSNOTIFY __u32 i_fsnotify_mask; /* all events this inode cares about */ RH_KABI_REPLACE(struct hlist_head i_fsnotify_marks, struct fsnotify_mark_connector __rcu *i_fsnotify_marks) #endif #ifdef CONFIG_IMA atomic_t i_readcount; /* struct files open RO */ #endif void *i_private; /* fs or device private pointer */ }; static inline int inode_unhashed(struct inode *inode) { return hlist_unhashed(&inode->i_hash); } /* * inode->i_mutex nesting subclasses for the lock validator: * * 0: the object of the current VFS operation * 1: parent * 2: child/target * 3: xattr * 4: second non-directory * 5: second parent (when locking independent directories in rename) * * I_MUTEX_NONDIR2 is for certain operations (such as rename) which lock two * non-directories at once. * * The locking order between these classes is * parent[2] -> child -> grandchild -> normal -> xattr -> second non-directory */ enum inode_i_mutex_lock_class { I_MUTEX_NORMAL, I_MUTEX_PARENT, I_MUTEX_CHILD, I_MUTEX_XATTR, I_MUTEX_NONDIR2, I_MUTEX_PARENT2, }; static inline void inode_lock(struct inode *inode) { mutex_lock(&inode->i_mutex); } static inline void inode_unlock(struct inode *inode) { mutex_unlock(&inode->i_mutex); } static inline int inode_trylock(struct inode *inode) { return mutex_trylock(&inode->i_mutex); } static inline int inode_is_locked(struct inode *inode) { return mutex_is_locked(&inode->i_mutex); } static inline void inode_lock_nested(struct inode *inode, unsigned subclass) { mutex_lock_nested(&inode->i_mutex, subclass); } void lock_two_nondirectories(struct inode *, struct inode*); void unlock_two_nondirectories(struct inode *, struct inode*); /* * NOTE: in a 32bit arch with a preemptable kernel and * an UP compile the i_size_read/write must be atomic * with respect to the local cpu (unlike with preempt disabled), * but they don't need to be atomic with respect to other cpus like in * true SMP (so they need either to either locally disable irq around * the read or for example on x86 they can be still implemented as a * cmpxchg8b without the need of the lock prefix). For SMP compiles * and 64bit archs it makes no difference if preempt is enabled or not. */ static inline loff_t i_size_read(const struct inode *inode) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) loff_t i_size; unsigned int seq; do { seq = read_seqcount_begin(&inode->i_size_seqcount); i_size = inode->i_size; } while (read_seqcount_retry(&inode->i_size_seqcount, seq)); return i_size; #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) loff_t i_size; preempt_disable(); i_size = inode->i_size; preempt_enable(); return i_size; #else return inode->i_size; #endif } /* * NOTE: unlike i_size_read(), i_size_write() does need locking around it * (normally i_mutex), otherwise on 32bit/SMP an update of i_size_seqcount * can be lost, resulting in subsequent i_size_read() calls spinning forever. */ static inline void i_size_write(struct inode *inode, loff_t i_size) { #if BITS_PER_LONG==32 && defined(CONFIG_SMP) preempt_disable(); write_seqcount_begin(&inode->i_size_seqcount); inode->i_size = i_size; write_seqcount_end(&inode->i_size_seqcount); preempt_enable(); #elif BITS_PER_LONG==32 && defined(CONFIG_PREEMPT) preempt_disable(); inode->i_size = i_size; preempt_enable(); #else inode->i_size = i_size; #endif } /* Helper functions so that in most cases filesystems will * not need to deal directly with kuid_t and kgid_t and can * instead deal with the raw numeric values that are stored * in the filesystem. */ static inline uid_t i_uid_read(const struct inode *inode) { return from_kuid(&init_user_ns, inode->i_uid); } static inline gid_t i_gid_read(const struct inode *inode) { return from_kgid(&init_user_ns, inode->i_gid); } static inline void i_uid_write(struct inode *inode, uid_t uid) { inode->i_uid = make_kuid(&init_user_ns, uid); } static inline void i_gid_write(struct inode *inode, gid_t gid) { inode->i_gid = make_kgid(&init_user_ns, gid); } static inline unsigned iminor(const struct inode *inode) { return MINOR(inode->i_rdev); } static inline unsigned imajor(const struct inode *inode) { return MAJOR(inode->i_rdev); } extern struct block_device *I_BDEV(struct inode *inode); struct fown_struct { rwlock_t lock; /* protects pid, uid, euid fields */ struct pid *pid; /* pid or -pgrp where SIGIO should be sent */ enum pid_type pid_type; /* Kind of process group SIGIO should be sent to */ kuid_t uid, euid; /* uid/euid of process setting the owner */ int signum; /* posix.1b rt signal to be delivered on IO */ }; /* * Track a single file's readahead state */ struct file_ra_state { pgoff_t start; /* where readahead started */ unsigned int size; /* # of readahead pages */ unsigned int async_size; /* do asynchronous readahead when there are only # of pages ahead */ unsigned int ra_pages; /* Maximum readahead window */ unsigned int mmap_miss; /* Cache miss stat for mmap accesses */ loff_t prev_pos; /* Cache last read() position */ }; /* * Check if @index falls in the readahead windows. */ static inline int ra_has_index(struct file_ra_state *ra, pgoff_t index) { return (index >= ra->start && index < ra->start + ra->size); } #define FILE_MNT_WRITE_TAKEN 1 #define FILE_MNT_WRITE_RELEASED 2 struct file { /* * fu_list becomes invalid after file_free is called and queued via * fu_rcuhead for RCU freeing */ union { struct list_head fu_list; struct rcu_head fu_rcuhead; } f_u; struct path f_path; #define f_dentry f_path.dentry struct inode *f_inode; /* cached value */ const struct file_operations *f_op; /* * Protects f_ep_links, f_flags. * Must not be taken from IRQ context. */ spinlock_t f_lock; #ifdef __GENKSYMS__ #ifdef CONFIG_SMP int f_sb_list_cpu; #endif #else #ifdef CONFIG_SMP int f_sb_list_cpu_deprecated; #endif #endif atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; #ifdef CONFIG_SECURITY void *f_security; #endif /* needed for tty driver, and maybe others */ void *private_data; #ifdef CONFIG_EPOLL /* Used by fs/eventpoll.c to link all the hooks to this file */ struct list_head f_ep_links; struct list_head f_tfile_llink; #endif /* #ifdef CONFIG_EPOLL */ struct address_space *f_mapping; #ifdef CONFIG_DEBUG_WRITECOUNT unsigned long f_mnt_write_state; #endif #ifndef __GENKSYMS__ struct mutex f_pos_lock; #endif }; struct file_handle { __u32 handle_bytes; int handle_type; /* file identifier */ unsigned char f_handle[0]; }; static inline struct file *get_file(struct file *f) { atomic_long_inc(&f->f_count); return f; } #define get_file_rcu(x) atomic_long_inc_not_zero(&(x)->f_count) #define fput_atomic(x) atomic_long_add_unless(&(x)->f_count, -1, 1) #define file_count(x) atomic_long_read(&(x)->f_count) #ifdef CONFIG_DEBUG_WRITECOUNT static inline void file_take_write(struct file *f) { WARN_ON(f->f_mnt_write_state != 0); f->f_mnt_write_state = FILE_MNT_WRITE_TAKEN; } static inline void file_release_write(struct file *f) { f->f_mnt_write_state |= FILE_MNT_WRITE_RELEASED; } static inline void file_reset_write(struct file *f) { f->f_mnt_write_state = 0; } static inline void file_check_state(struct file *f) { /* * At this point, either both or neither of these bits * should be set. */ WARN_ON(f->f_mnt_write_state == FILE_MNT_WRITE_TAKEN); WARN_ON(f->f_mnt_write_state == FILE_MNT_WRITE_RELEASED); } static inline int file_check_writeable(struct file *f) { if (f->f_mnt_write_state == FILE_MNT_WRITE_TAKEN) return 0; printk(KERN_WARNING "writeable file with no " "mnt_want_write()\n"); WARN_ON(1); return -EINVAL; } #else /* !CONFIG_DEBUG_WRITECOUNT */ static inline void file_take_write(struct file *filp) {} static inline void file_release_write(struct file *filp) {} static inline void file_reset_write(struct file *filp) {} static inline void file_check_state(struct file *filp) {} static inline int file_check_writeable(struct file *filp) { return 0; } #endif /* CONFIG_DEBUG_WRITECOUNT */ #define MAX_NON_LFS ((1UL<<31) - 1) /* Page cache limit. The filesystems should put that into their s_maxbytes limits, otherwise bad things can happen in VM. */ #if BITS_PER_LONG==32 #define MAX_LFS_FILESIZE (((loff_t)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) #elif BITS_PER_LONG==64 #define MAX_LFS_FILESIZE ((loff_t)0x7fffffffffffffffLL) #endif #define FL_POSIX 1 #define FL_FLOCK 2 #define FL_DELEG 4 /* NFSv4 delegation */ #define FL_ACCESS 8 /* not trying to lock, just looking */ #define FL_EXISTS 16 /* when unlocking, test for existence */ #define FL_LEASE 32 /* lease held on this file */ #define FL_CLOSE 64 /* unlock on close */ #define FL_SLEEP 128 /* A blocking lock */ #define FL_DOWNGRADE_PENDING 256 /* Lease is being downgraded */ #define FL_UNLOCK_PENDING 512 /* Lease is being broken */ #define FL_OFDLCK 1024 /* lock is "owned" by struct file */ #define FL_LAYOUT 2048 /* outstanding pNFS layout */ #define FL_LM_OPS_EXTEND 65536 /* safe to use lock_manager_operations_extend */ #define FL_CLOSE_POSIX (FL_POSIX | FL_CLOSE) /* * Special return value from posix_lock_file() and vfs_lock_file() for * asynchronous locking. */ #define FILE_LOCK_DEFERRED 1 /* * The POSIX file lock owner is determined by * the "struct files_struct" in the thread group * (or NULL for no owner - BSD locks). * * Lockd stuffs a "host" pointer into this. */ typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock *, struct file_lock *); unsigned long (*lm_owner_key)(struct file_lock *); void (*lm_notify)(struct file_lock *); /* unblock callback */ int (*lm_grant)(struct file_lock *, struct file_lock *, int); void (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock **, int); }; /* Can't use these without setting FL_LM_OPS_EXTEND */ struct lock_manager_operations_extend { struct lock_manager_operations kabi_lmops; void (*lm_get_owner)(struct file_lock *, struct file_lock *); void (*lm_put_owner)(struct file_lock *); }; #define to_lm_ops_extend(fl_lmops) \ container_of((fl_lmops), struct lock_manager_operations_extend, kabi_lmops) struct lock_manager { struct list_head list; /* * NFSv4 and up also want opens blocked during the grace period; * NLM doesn't care: */ bool block_opens; }; struct net; void locks_start_grace(struct net *, struct lock_manager *); void locks_end_grace(struct lock_manager *); int locks_in_grace(struct net *); int opens_in_grace(struct net *); /* that will die - we need it for nfs_lock_info */ #include <linux/nfs_fs_i.h> /* * struct file_lock represents a generic "file lock". It's used to represent * POSIX byte range locks, BSD (flock) locks, and leases. It's important to * note that the same struct is used to represent both a request for a lock and * the lock itself, but the same object is never used for both. * * FIXME: should we create a separate "struct lock_request" to help distinguish * these two uses? * * The i_flock list is ordered by: * * 1) lock type -- FL_LEASEs first, then FL_FLOCK, and finally FL_POSIX * 2) lock owner * 3) lock range start * 4) lock range end * * Obviously, the last two criteria only matter for POSIX locks. */ struct file_lock { struct file_lock *fl_next; /* singly linked list for this inode */ struct hlist_node fl_link; /* node in global lists */ struct list_head fl_block; /* circular list of blocked processes */ fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; /* what cpu's list is this on? */ struct pid *fl_nspid; wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct * fl_fasync; /* for lease break notifications */ /* for lease breaks: */ unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; /* Callbacks for filesystems */ const struct lock_manager_operations *fl_lmops; /* Callbacks for lockmanagers */ union { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct { struct list_head link; /* link in AFS vnode's pending_locks list */ int state; /* state of grant or error if -ve */ } afs; } fl_u; }; static inline struct lock_manager_operations_extend * get_lm_ops_extend(struct file_lock *fl) { if (fl->fl_flags & FL_LM_OPS_EXTEND) return to_lm_ops_extend(fl->fl_lmops); return NULL; } /* The following constant reflects the upper bound of the file/locking space */ #ifndef OFFSET_MAX #define INT_LIMIT(x) (~((x)1 << (sizeof(x)*8 - 1))) #define OFFSET_MAX INT_LIMIT(loff_t) #define OFFT_OFFSET_MAX INT_LIMIT(off_t) #endif #include <linux/fcntl.h> extern void send_sigio(struct fown_struct *fown, int fd, int band); /* * Return the inode to use for locking * * For overlayfs this should be the overlay inode, not the real inode returned * by file_inode(). For any other fs file_inode(filp) and locks_inode(filp) are * equal. */ static inline struct inode *locks_inode(const struct file *f) { return f->f_path.dentry->d_inode; } #ifdef CONFIG_FILE_LOCKING extern int fcntl_getlk(struct file *, unsigned int, struct flock *); extern int fcntl_setlk(unsigned int, struct file *, unsigned int, struct flock *); #if BITS_PER_LONG == 32 extern int fcntl_getlk64(struct file *, unsigned int, struct flock64 *); extern int fcntl_setlk64(unsigned int, struct file *, unsigned int, struct flock64 *); #endif extern int fcntl_setlease(unsigned int fd, struct file *filp, long arg); extern int fcntl_getlease(struct file *filp); /* fs/locks.c */ void locks_free_lock(struct file_lock *fl); extern void locks_init_lock(struct file_lock *); extern struct file_lock * locks_alloc_lock(void); extern void locks_copy_lock(struct file_lock *, struct file_lock *); extern void locks_copy_conflock(struct file_lock *, struct file_lock *); extern void __locks_copy_lock(struct file_lock *, const struct file_lock *); extern void locks_remove_posix(struct file *, fl_owner_t); extern void locks_remove_file(struct file *); extern void locks_release_private(struct file_lock *); extern void posix_test_lock(struct file *, struct file_lock *); extern int posix_lock_file(struct file *, struct file_lock *, struct file_lock *); extern int posix_lock_inode_wait(struct inode *, struct file_lock *); extern int posix_unblock_lock(struct file_lock *); extern int vfs_test_lock(struct file *, struct file_lock *); extern int vfs_lock_file(struct file *, unsigned int, struct file_lock *, struct file_lock *); extern int vfs_cancel_lock(struct file *filp, struct file_lock *fl); extern int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl); extern int __break_lease(struct inode *inode, unsigned int flags, unsigned int type); extern void lease_get_mtime(struct inode *, struct timespec *time); extern int generic_setlease(struct file *, long, struct file_lock **, void **priv); extern int vfs_setlease(struct file *, long, struct file_lock **, void **); extern int lease_modify(struct file_lock **, int); extern int lock_may_read(struct inode *, loff_t start, unsigned long count); extern int lock_may_write(struct inode *, loff_t start, unsigned long count); struct files_struct; extern void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files); #else /* !CONFIG_FILE_LOCKING */ static inline int fcntl_getlk(struct file *file, unsigned int cmd, struct flock __user *user) { return -EINVAL; } static inline int fcntl_setlk(unsigned int fd, struct file *file, unsigned int cmd, struct flock __user *user) { return -EACCES; } #if BITS_PER_LONG == 32 static inline int fcntl_getlk64(struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EINVAL; } static inline int fcntl_setlk64(unsigned int fd, struct file *file, unsigned int cmd, struct flock64 __user *user) { return -EACCES; } #endif static inline int fcntl_setlease(unsigned int fd, struct file *filp, long arg) { return 0; } static inline int fcntl_getlease(struct file *filp) { return 0; } static inline void locks_init_lock(struct file_lock *fl) { return; } static inline void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) { return; } static inline void __locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_copy_lock(struct file_lock *new, struct file_lock *fl) { return; } static inline void locks_remove_posix(struct file *filp, fl_owner_t owner) { return; } static inline void locks_remove_file(struct file *filp) { return; } static inline void posix_test_lock(struct file *filp, struct file_lock *fl) { return; } static inline int posix_lock_file(struct file *filp, struct file_lock *fl, struct file_lock *conflock) { return -ENOLCK; } static inline int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int posix_unblock_lock(struct file_lock *waiter) { return -ENOENT; } static inline int vfs_test_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) { return -ENOLCK; } static inline int vfs_cancel_lock(struct file *filp, struct file_lock *fl) { return 0; } static inline int flock_lock_inode_wait(struct inode *inode, struct file_lock *request) { return -ENOLCK; } static inline int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) { return -ENOLCK; } static inline int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) { return 0; } static inline void lease_get_mtime(struct inode *inode, struct timespec *time) { return; } static inline int generic_setlease(struct file *filp, long arg, struct file_lock **flp, void **priv) { return -EINVAL; } static inline int vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) { return -EINVAL; } static inline int lease_modify(struct file_lock **before, int arg) { return -EINVAL; } static inline int lock_may_read(struct inode *inode, loff_t start, unsigned long len) { return 1; } static inline int lock_may_write(struct inode *inode, loff_t start, unsigned long len) { return 1; } struct files_struct; static inline void show_fd_locks(struct seq_file *f, struct file *filp, struct files_struct *files) {} #endif /* !CONFIG_FILE_LOCKING */ static inline struct inode *file_inode(const struct file *f) { return f->f_inode; } static inline int posix_lock_file_wait(struct file *filp, struct file_lock *fl) { return posix_lock_inode_wait(locks_inode(filp), fl); } static inline int flock_lock_file_wait(struct file *filp, struct file_lock *fl) { return flock_lock_inode_wait(locks_inode(filp), fl); } static inline int locks_lock_file_wait(struct file *filp, struct file_lock *fl) { return locks_lock_inode_wait(locks_inode(filp), fl); } struct fasync_struct { spinlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; /* singly linked list */ struct file *fa_file; struct rcu_head fa_rcu; }; #define FASYNC_MAGIC 0x4601 /* SMP safe fasync helpers: */ extern int fasync_helper(int, struct file *, int, struct fasync_struct **); extern struct fasync_struct *fasync_insert_entry(int, struct file *, struct fasync_struct **, struct fasync_struct *); extern int fasync_remove_entry(struct file *, struct fasync_struct **); extern struct fasync_struct *fasync_alloc(void); extern void fasync_free(struct fasync_struct *); /* can be called from interrupts */ extern void kill_fasync(struct fasync_struct **, int, int); extern int __f_setown(struct file *filp, struct pid *, enum pid_type, int force); extern int f_setown(struct file *filp, unsigned long arg, int force); extern void f_delown(struct file *filp); extern pid_t f_getown(struct file *filp); extern int send_sigurg(struct fown_struct *fown); struct mm_struct; /* * Umount options */ #define MNT_FORCE 0x00000001 /* Attempt to forcibily umount */ #define MNT_DETACH 0x00000002 /* Just detach from the tree */ #define MNT_EXPIRE 0x00000004 /* Mark for expiry */ #define UMOUNT_NOFOLLOW 0x00000008 /* Don't follow symlink on umount */ #define UMOUNT_UNUSED 0x80000000 /* Flag guaranteed to be unused */ extern struct list_head super_blocks; extern spinlock_t sb_lock; /* sb->s_iflags */ #define SB_I_NOEXEC 0x00000002 /* Ignore executables on this fs */ #define SB_I_NODEV 0x00000004 /* Ignore devices on this fs */ #define SB_I_MULTIROOT 0x00000008 /* Multiple roots to the dentry tree */ /* sb->s_iflags to limit user namespace mounts */ #define SB_I_USERNS_VISIBLE 0x00000010 /* fstype already mounted */ /* Possible states of 'frozen' field */ enum { SB_UNFROZEN = 0, /* FS is unfrozen */ SB_FREEZE_WRITE = 1, /* Writes, dir ops, ioctls frozen */ SB_FREEZE_PAGEFAULT = 2, /* Page faults stopped as well */ SB_FREEZE_FS = 3, /* For internal FS use (e.g. to stop * internal threads if needed) */ SB_FREEZE_COMPLETE = 4, /* ->freeze_fs finished successfully */ }; #define SB_FREEZE_LEVELS (SB_FREEZE_COMPLETE - 1) struct sb_writers { /* Counters for counting writers at each level */ struct percpu_counter counter[SB_FREEZE_LEVELS]; wait_queue_head_t wait; /* queue for waiting for writers / faults to finish */ int frozen; /* Is sb frozen? */ wait_queue_head_t wait_unfrozen; /* queue for waiting for sb to be thawed */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map lock_map[SB_FREEZE_LEVELS]; #endif }; struct super_block { struct list_head s_list; /* Keep this first */ dev_t s_dev; /* search index; _not_ kdev_t */ unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; /* Max file size */ struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; #ifdef CONFIG_SECURITY void *s_security; #endif const struct xattr_handler **s_xattr; struct list_head s_inodes; /* all inodes */ struct hlist_bl_head s_anon; /* anonymous dentries for (nfs) exporting */ #ifdef __GENKSYMS__ #ifdef CONFIG_SMP struct list_head __percpu *s_files; #else struct list_head s_files; #endif #else #ifdef CONFIG_SMP struct list_head __percpu *s_files_deprecated; #else struct list_head s_files_deprecated; #endif #endif struct list_head s_mounts; /* list of mounts; _not_ for fs use */ /* s_dentry_lru, s_nr_dentry_unused protected by dcache.c lru locks */ struct list_head s_dentry_lru; /* unused dentry lru */ int s_nr_dentry_unused; /* # of dentry on lru */ /* s_inode_lru_lock protects s_inode_lru and s_nr_inodes_unused */ spinlock_t s_inode_lru_lock ____cacheline_aligned_in_smp; struct list_head s_inode_lru; /* unused inode lru */ int s_nr_inodes_unused; /* # of inodes on lru */ struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; struct quota_info s_dquot; /* Diskquota specific options */ struct sb_writers s_writers; char s_id[32]; /* Informational name */ u8 s_uuid[16]; /* UUID */ void *s_fs_info; /* Filesystem private info */ unsigned int s_max_links; fmode_t s_mode; /* Granularity of c/m/atime in ns. Cannot be worse than a second */ u32 s_time_gran; /* * The next field is for VFS *only*. No filesystems have any business * even looking at it. You had been warned. */ struct mutex s_vfs_rename_mutex; /* Kludge */ /* * Filesystem subtype. If non-empty the filesystem type field * in /proc/mounts will be "type.subtype" */ char *s_subtype; /* * Saved mount options for lazy filesystems using * generic_show_options() */ char __rcu *s_options; const struct dentry_operations *s_d_op; /* default d_op for dentries */ /* * Saved pool identifier for cleancache (-1 means none) */ int cleancache_poolid; struct shrinker s_shrink; /* per-sb shrinker handle */ /* Number of inodes with nlink == 0 but still referenced */ atomic_long_t s_remove_count; /* Being remounted read-only */ int s_readonly_remount; /* AIO completions deferred from interrupt context */ RH_KABI_EXTEND(struct workqueue_struct *s_dio_done_wq) RH_KABI_EXTEND(struct rcu_head rcu) RH_KABI_EXTEND(struct hlist_head s_pins) /* s_inode_list_lock protects s_inodes */ RH_KABI_EXTEND(spinlock_t s_inode_list_lock) RH_KABI_EXTEND(struct mutex s_sync_lock) /* sync serialisation lock */ RH_KABI_EXTEND(spinlock_t s_inode_wblist_lock) RH_KABI_EXTEND(struct list_head s_inodes_wb) /* writeback inodes */ RH_KABI_EXTEND(unsigned long s_iflags) RH_KABI_EXTEND(struct user_namespace *s_user_ns) }; extern const unsigned super_block_wrapper_version; struct super_block_wrapper { struct super_block sb; /* -- Wrapper version 0 -- */ /* * Indicates how deep in a filesystem stack this SB is */ int s_stack_depth; /* -- Wrapper version 1 -- */ }; static inline struct super_block_wrapper *get_sb_wrapper(struct super_block *sb, unsigned version) { /* Make sure we get a link failure if this function is used against an * older kernel that doesn't have the superblock wrapper. */ if (super_block_wrapper_version < version) return NULL; return container_of(sb, struct super_block_wrapper, sb); } static inline int *get_s_stack_depth(struct super_block *sb) { struct super_block_wrapper *wrapper = get_sb_wrapper(sb, 0); return wrapper ? &wrapper->s_stack_depth : NULL; } /* superblock cache pruning functions */ extern void prune_icache_sb(struct super_block *sb, int nr_to_scan); extern void prune_dcache_sb(struct super_block *sb, int nr_to_scan); extern struct timespec current_fs_time(struct super_block *sb); /* * Snapshotting support. */ void __sb_end_write(struct super_block *sb, int level); int __sb_start_write(struct super_block *sb, int level, bool wait); /** * sb_end_write - drop write access to a superblock * @sb: the super we wrote to * * Decrement number of writers to the filesystem. Wake up possible waiters * wanting to freeze the filesystem. */ static inline void sb_end_write(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_WRITE); } /** * sb_end_pagefault - drop write access to a superblock from a page fault * @sb: the super we wrote to * * Decrement number of processes handling write page fault to the filesystem. * Wake up possible waiters wanting to freeze the filesystem. */ static inline void sb_end_pagefault(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_PAGEFAULT); } /** * sb_end_intwrite - drop write access to a superblock for internal fs purposes * @sb: the super we wrote to * * Decrement fs-internal number of writers to the filesystem. Wake up possible * waiters wanting to freeze the filesystem. */ static inline void sb_end_intwrite(struct super_block *sb) { __sb_end_write(sb, SB_FREEZE_FS); } /** * sb_start_write - get write access to a superblock * @sb: the super we write to * * When a process wants to write data or metadata to a file system (i.e. dirty * a page or an inode), it should embed the operation in a sb_start_write() - * sb_end_write() pair to get exclusion against file system freezing. This * function increments number of writers preventing freezing. If the file * system is already frozen, the function waits until the file system is * thawed. * * Since freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. Generally, * freeze protection should be the outermost lock. In particular, we have: * * sb_start_write * -> i_mutex (write path, truncate, directory ops, ...) * -> s_umount (freeze_super, thaw_super) */ static inline void sb_start_write(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_WRITE, true); } static inline int sb_start_write_trylock(struct super_block *sb) { return __sb_start_write(sb, SB_FREEZE_WRITE, false); } /** * sb_start_pagefault - get write access to a superblock from a page fault * @sb: the super we write to * * When a process starts handling write page fault, it should embed the * operation into sb_start_pagefault() - sb_end_pagefault() pair to get * exclusion against file system freezing. This is needed since the page fault * is going to dirty a page. This function increments number of running page * faults preventing freezing. If the file system is already frozen, the * function waits until the file system is thawed. * * Since page fault freeze protection behaves as a lock, users have to preserve * ordering of freeze protection and other filesystem locks. It is advised to * put sb_start_pagefault() close to mmap_sem in lock ordering. Page fault * handling code implies lock dependency: * * mmap_sem * -> sb_start_pagefault */ static inline void sb_start_pagefault(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_PAGEFAULT, true); } /* * sb_start_intwrite - get write access to a superblock for internal fs purposes * @sb: the super we write to * * This is the third level of protection against filesystem freezing. It is * free for use by a filesystem. The only requirement is that it must rank * below sb_start_pagefault. * * For example filesystem can call sb_start_intwrite() when starting a * transaction which somewhat eases handling of freezing for internal sources * of filesystem changes (internal fs threads, discarding preallocation on file * close, etc.). */ static inline void sb_start_intwrite(struct super_block *sb) { __sb_start_write(sb, SB_FREEZE_FS, true); } static inline int sb_start_intwrite_trylock(struct super_block *sb) { return __sb_start_write(sb, SB_FREEZE_FS, false); } extern bool inode_owner_or_capable(const struct inode *inode); /* * VFS helper functions.. */ extern int vfs_create(struct inode *, struct dentry *, umode_t, bool); extern int vfs_mkdir(struct inode *, struct dentry *, umode_t); extern int vfs_mknod(struct inode *, struct dentry *, umode_t, dev_t); extern int vfs_symlink(struct inode *, struct dentry *, const char *); extern int vfs_link(struct dentry *, struct inode *, struct dentry *, struct inode **); extern int vfs_rmdir(struct inode *, struct dentry *); extern int vfs_unlink(struct inode *, struct dentry *, struct inode **); extern int vfs_rename(struct inode *, struct dentry *, struct inode *, struct dentry *, struct inode **, unsigned int); extern int vfs_whiteout(struct inode *, struct dentry *); /* * VFS dentry helper functions. */ extern void dentry_unhash(struct dentry *dentry); /* * VFS file helper functions. */ extern void inode_init_owner(struct inode *inode, const struct inode *dir, umode_t mode); extern bool may_open_dev(const struct path *path); /* * VFS FS_IOC_FIEMAP helper definitions. */ struct fiemap_extent_info { unsigned int fi_flags; /* Flags as passed from user */ unsigned int fi_extents_mapped; /* Number of mapped extents */ unsigned int fi_extents_max; /* Size of fiemap_extent array */ struct fiemap_extent __user *fi_extents_start; /* Start of fiemap_extent array */ }; int fiemap_fill_next_extent(struct fiemap_extent_info *info, u64 logical, u64 phys, u64 len, u32 flags); int fiemap_check_flags(struct fiemap_extent_info *fieinfo, u32 fs_flags); /* * File types * * NOTE! These match bits 12..15 of stat.st_mode * (ie "(i_mode >> 12) & 15"). */ #define DT_UNKNOWN 0 #define DT_FIFO 1 #define DT_CHR 2 #define DT_DIR 4 #define DT_BLK 6 #define DT_REG 8 #define DT_LNK 10 #define DT_SOCK 12 #define DT_WHT 14 /* * This is the "filldir" function type, used by readdir() to let * the kernel specify what kind of dirent layout it wants to have. * This allows the kernel to read directories into kernel space or * to have different dirent layouts depending on the binary type. */ typedef int (*filldir_t)(void *, const char *, int, loff_t, u64, unsigned); struct dir_context { filldir_t actor; loff_t pos; }; struct block_device_operations; /* These macros are for out of kernel modules to test that * the kernel supports the unlocked_ioctl and compat_ioctl * fields in struct file_operations. */ #define HAVE_COMPAT_IOCTL 1 #define HAVE_UNLOCKED_IOCTL 1 struct file_operations { struct module *owner; loff_t (*llseek) (struct file *, loff_t, int); ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t); ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t); int (*readdir) (struct file *, void *, filldir_t); unsigned int (*poll) (struct file *, struct poll_table_struct *); long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); long (*compat_ioctl) (struct file *, unsigned int, unsigned long); int (*mmap) (struct file *, struct vm_area_struct *); int (*open) (struct inode *, struct file *); int (*flush) (struct file *, fl_owner_t id); int (*release) (struct inode *, struct file *); int (*fsync) (struct file *, loff_t, loff_t, int datasync); int (*aio_fsync) (struct kiocb *, int datasync); int (*fasync) (int, struct file *, int); int (*lock) (struct file *, int, struct file_lock *); ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock) (struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); RH_KABI_REPLACE(int (*setlease)(struct file *, long, struct file_lock **), int (*setlease)(struct file *, long, struct file_lock **, void **)) long (*fallocate)(struct file *file, int mode, loff_t offset, loff_t len); int (*show_fdinfo)(struct seq_file *m, struct file *f); RH_KABI_EXTEND(int (*iterate) (struct file *, struct dir_context *)) }; /* RH usage only, not for external modules use */ struct file_operations_extend { struct file_operations kabi_fops; void (*mremap)(struct file *, struct vm_area_struct *); ssize_t (*copy_file_range)(struct file *, loff_t, struct file *, loff_t, size_t, unsigned int); int (*clone_file_range)(struct file *, loff_t, struct file *, loff_t, u64); unsigned long mmap_supported_flags; }; struct inode_operations { struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); void * (*follow_link) (struct dentry *, struct nameidata *); int (*permission) (struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int); int (*readlink) (struct dentry *, char __user *,int); void (*put_link) (struct dentry *, struct nameidata *, void *); int (*create) (struct inode *,struct dentry *, umode_t, bool); int (*link) (struct dentry *,struct inode *,struct dentry *); int (*unlink) (struct inode *,struct dentry *); int (*symlink) (struct inode *,struct dentry *,const char *); int (*mkdir) (struct inode *,struct dentry *,umode_t); int (*rmdir) (struct inode *,struct dentry *); int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t); int (*rename) (struct inode *, struct dentry *, struct inode *, struct dentry *); int (*setattr) (struct dentry *, struct iattr *); int (*getattr) (struct vfsmount *mnt, struct dentry *, struct kstat *); int (*setxattr) (struct dentry *, const char *,const void *,size_t,int); ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t); ssize_t (*listxattr) (struct dentry *, char *, size_t); int (*removexattr) (struct dentry *, const char *); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 start, u64 len); int (*update_time)(struct inode *, struct timespec *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned open_flag, umode_t create_mode, int *opened); } ____cacheline_aligned; /* * RHEL inode struct wrapper - should only be used with get_*_iop() accessors. */ typedef int (*iop_rename2_t) (struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); typedef int (*iop_tmpfile_t) (struct inode *, struct dentry *, umode_t); typedef int (*iop_dentry_open_t) (struct dentry *, struct file *, const struct cred *); struct inode_operations_wrapper { struct inode_operations ops; unsigned version; /* -- Wrapper version 0 -- */ int (*rename2) (struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*tmpfile) (struct inode *, struct dentry *, umode_t); /* WARNING: probably going away soon, do not use! */ int (*dentry_open)(struct dentry *, struct file *, const struct cred *); /* -- Wrapper version 1 -- */ } ____cacheline_aligned; ssize_t rw_copy_check_uvector(int type, const struct iovec __user * uvector, unsigned long nr_segs, unsigned long fast_segs, struct iovec *fast_pointer, struct iovec **ret_pointer); extern ssize_t vfs_read(struct file *, char __user *, size_t, loff_t *); extern ssize_t vfs_write(struct file *, const char __user *, size_t, loff_t *); extern ssize_t vfs_readv(struct file *, const struct iovec __user *, unsigned long, loff_t *); extern ssize_t vfs_writev(struct file *, const struct iovec __user *, unsigned long, loff_t *); extern ssize_t vfs_copy_file_range(struct file *, loff_t , struct file *, loff_t, size_t, unsigned int); extern int vfs_clone_file_range(struct file *file_in, loff_t pos_in, struct file *file_out, loff_t pos_out, u64 len); struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); void (*put_super) (struct super_block *); int (*sync_fs)(struct super_block *sb, int wait); int (*freeze_fs) (struct super_block *); int (*unfreeze_fs) (struct super_block *); int (*statfs) (struct dentry *, struct kstatfs *); int (*remount_fs) (struct super_block *, int *, char *); void (*umount_begin) (struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); #ifdef CONFIG_QUOTA ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); #endif int (*bdev_try_to_free_page)(struct super_block*, struct page*, gfp_t); int (*nr_cached_objects)(struct super_block *); void (*free_cached_objects)(struct super_block *, int); RH_KABI_EXTEND(struct list_head *(*inode_to_wblist)(struct inode *)) RH_KABI_EXTEND(struct inode *(*wblist_to_inode)(struct list_head *)) }; /* * Inode flags - they have no relation to superblock flags now */ #define S_SYNC 1 /* Writes are synced at once */ #define S_NOATIME 2 /* Do not update access times */ #define S_APPEND 4 /* Append-only file */ #define S_IMMUTABLE 8 /* Immutable file */ #define S_DEAD 16 /* removed, but still open directory */ #define S_NOQUOTA 32 /* Inode is not counted to quota */ #define S_DIRSYNC 64 /* Directory modifications are synchronous */ #define S_NOCMTIME 128 /* Do not update file c/mtime */ #define S_SWAPFILE 256 /* Do not truncate: swapon got its bmaps */ #define S_PRIVATE 512 /* Inode is fs-internal */ #define S_IMA 1024 /* Inode has an associated IMA struct */ #define S_AUTOMOUNT 2048 /* Automount/referral quasi-directory */ #define S_NOSEC 4096 /* no suid or xattr security attributes */ #define S_IOPS_WRAPPER 8192 /* i_op points to struct inode_operations_wrapper */ #ifdef CONFIG_FS_DAX #define S_DAX 16384 /* Direct Access, avoiding the page cache */ #else #define S_DAX 0 /* Make all the DAX code disappear */ #endif /* * Note that nosuid etc flags are inode-specific: setting some file-system * flags just means all the inodes inherit those flags by default. It might be * possible to override it selectively if you really wanted to with some * ioctl() that is not currently implemented. * * Exception: MS_RDONLY is always applied to the entire file system. * * Unfortunately, it is possible to change a filesystems flags with it mounted * with files in use. This means that all of the inodes will not have their * i_flags updated. Hence, i_flags no longer inherit the superblock mount * flags, so these have to be checked separately. -- rmk@arm.uk.linux.org */ #define __IS_FLG(inode, flg) ((inode)->i_sb->s_flags & (flg)) #define IS_RDONLY(inode) ((inode)->i_sb->s_flags & MS_RDONLY) #define IS_SYNC(inode) (__IS_FLG(inode, MS_SYNCHRONOUS) || \ ((inode)->i_flags & S_SYNC)) #define IS_DIRSYNC(inode) (__IS_FLG(inode, MS_SYNCHRONOUS|MS_DIRSYNC) || \ ((inode)->i_flags & (S_SYNC|S_DIRSYNC))) #define IS_MANDLOCK(inode) __IS_FLG(inode, MS_MANDLOCK) #define IS_NOATIME(inode) __IS_FLG(inode, MS_RDONLY|MS_NOATIME) #define IS_I_VERSION(inode) __IS_FLG(inode, MS_I_VERSION) #define IS_NOQUOTA(inode) ((inode)->i_flags & S_NOQUOTA) #define IS_APPEND(inode) ((inode)->i_flags & S_APPEND) #define IS_IMMUTABLE(inode) ((inode)->i_flags & S_IMMUTABLE) #define IS_POSIXACL(inode) __IS_FLG(inode, MS_POSIXACL) #define IS_DEADDIR(inode) ((inode)->i_flags & S_DEAD) #define IS_NOCMTIME(inode) ((inode)->i_flags & S_NOCMTIME) #define IS_SWAPFILE(inode) ((inode)->i_flags & S_SWAPFILE) #define IS_PRIVATE(inode) ((inode)->i_flags & S_PRIVATE) #define IS_IMA(inode) ((inode)->i_flags & S_IMA) #define IS_AUTOMOUNT(inode) ((inode)->i_flags & S_AUTOMOUNT) #define IS_NOSEC(inode) ((inode)->i_flags & S_NOSEC) #define IS_IOPS_WRAPPER(inode) ((inode)->i_flags & S_IOPS_WRAPPER) #define IS_DAX(inode) ((inode)->i_flags & S_DAX) #define IS_WHITEOUT(inode) (S_ISCHR(inode->i_mode) && \ (inode)->i_rdev == WHITEOUT_DEV) /* * Inode state bits. Protected by inode->i_lock * * Three bits determine the dirty state of the inode, I_DIRTY_SYNC, * I_DIRTY_DATASYNC and I_DIRTY_PAGES. * * Four bits define the lifetime of an inode. Initially, inodes are I_NEW, * until that flag is cleared. I_WILL_FREE, I_FREEING and I_CLEAR are set at * various stages of removing an inode. * * Two bits are used for locking and completion notification, I_NEW and I_SYNC. * * I_DIRTY_SYNC Inode is dirty, but doesn't have to be written on * fdatasync(). i_atime is the usual cause. * I_DIRTY_DATASYNC Data-related inode changes pending. We keep track of * these changes separately from I_DIRTY_SYNC so that we * don't have to write inode on fdatasync() when only * mtime has changed in it. * I_DIRTY_PAGES Inode has dirty pages. Inode itself may be clean. * I_NEW Serves as both a mutex and completion notification. * New inodes set I_NEW. If two processes both create * the same inode, one of them will release its inode and * wait for I_NEW to be released before returning. * Inodes in I_WILL_FREE, I_FREEING or I_CLEAR state can * also cause waiting on I_NEW, without I_NEW actually * being set. find_inode() uses this to prevent returning * nearly-dead inodes. * I_WILL_FREE Must be set when calling write_inode_now() if i_count * is zero. I_FREEING must be set when I_WILL_FREE is * cleared. * I_FREEING Set when inode is about to be freed but still has dirty * pages or buffers attached or the inode itself is still * dirty. * I_CLEAR Added by clear_inode(). In this state the inode is * clean and can be destroyed. Inode keeps I_FREEING. * * Inodes that are I_WILL_FREE, I_FREEING or I_CLEAR are * prohibited for many purposes. iget() must wait for * the inode to be completely released, then create it * anew. Other functions will just ignore such inodes, * if appropriate. I_NEW is used for waiting. * * I_SYNC Writeback of inode is running. The bit is set during * data writeback, and cleared with a wakeup on the bit * address once it is done. The bit is also used to pin * the inode in memory for flusher thread. * * I_REFERENCED Marks the inode as recently references on the LRU list. * * I_DIO_WAKEUP Never set. Only used as a key for wait_on_bit(). * * I_OVL_INUSE Used by overlayfs to get exclusive ownership on upper * and work dirs among overlayfs mounts. * * Q: What is the difference between I_WILL_FREE and I_FREEING? */ #define I_DIRTY_SYNC (1 << 0) #define I_DIRTY_DATASYNC (1 << 1) #define I_DIRTY_PAGES (1 << 2) #define __I_NEW 3 #define I_NEW (1 << __I_NEW) #define I_WILL_FREE (1 << 4) #define I_FREEING (1 << 5) #define I_CLEAR (1 << 6) #define __I_SYNC 7 #define I_SYNC (1 << __I_SYNC) #define I_REFERENCED (1 << 8) #define __I_DIO_WAKEUP 9 #define I_DIO_WAKEUP (1 << I_DIO_WAKEUP) #define I_LINKABLE (1 << 10) #define I_OVL_INUSE (1 << 11) #define I_DIRTY (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_PAGES) extern void __mark_inode_dirty(struct inode *, int); static inline void mark_inode_dirty(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY); } static inline void mark_inode_dirty_sync(struct inode *inode) { __mark_inode_dirty(inode, I_DIRTY_SYNC); } extern void inc_nlink(struct inode *inode); extern void drop_nlink(struct inode *inode); extern void clear_nlink(struct inode *inode); extern void set_nlink(struct inode *inode, unsigned int nlink); static inline void inode_inc_link_count(struct inode *inode) { inc_nlink(inode); mark_inode_dirty(inode); } static inline void inode_dec_link_count(struct inode *inode) { drop_nlink(inode); mark_inode_dirty(inode); } /** * inode_inc_iversion - increments i_version * @inode: inode that need to be updated * * Every time the inode is modified, the i_version field will be incremented. * The filesystem has to be mounted with i_version flag */ static inline void inode_inc_iversion(struct inode *inode) { spin_lock(&inode->i_lock); inode->i_version++; spin_unlock(&inode->i_lock); } enum file_time_flags { S_ATIME = 1, S_MTIME = 2, S_CTIME = 4, S_VERSION = 8, }; extern void touch_atime(struct path *); static inline void file_accessed(struct file *file) { if (!(file->f_flags & O_NOATIME)) touch_atime(&file->f_path); } int sync_inode(struct inode *inode, struct writeback_control *wbc); int sync_inode_metadata(struct inode *inode, int wait); struct file_system_type { const char *name; int fs_flags; #define FS_REQUIRES_DEV 1 #define FS_BINARY_MOUNTDATA 2 #define FS_HAS_SUBTYPE 4 #define FS_USERNS_MOUNT 8 /* Can be mounted by userns root */ #define FS_HAS_RM_XQUOTA 256 /* KABI: fs has the rm_xquota quota op */ #define FS_HAS_INVALIDATE_RANGE 512 /* FS has new ->invalidatepage with length arg */ #define FS_HAS_DIO_IODONE2 1024 /* KABI: fs supports new iodone */ #define FS_HAS_NEXTDQBLK 2048 /* KABI: fs has the ->get_nextdqblk op */ #define FS_HAS_DOPS_WRAPPER 4096 /* kabi: fs is using dentry_operations_wrapper. sb->s_d_op points to dentry_operations_wrapper */ #define FS_RENAME_DOES_D_MOVE 32768 /* FS will handle d_move() during rename() internally. */ #define FS_HAS_WBLIST 131072 /* KABI: fs has writeback list super ops */ struct dentry *(*mount) (struct file_system_type *, int, const char *, void *); void (*kill_sb) (struct super_block *); struct module *owner; struct file_system_type * next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[SB_FREEZE_LEVELS]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key i_mutex_dir_key; }; #define sb_has_rm_xquota(sb) ((sb)->s_type->fs_flags & FS_HAS_RM_XQUOTA) #define sb_has_nextdqblk(sb) ((sb)->s_type->fs_flags & FS_HAS_NEXTDQBLK) #define sb_has_dops_wrapper(sb) ((sb)->s_type->fs_flags & FS_HAS_DOPS_WRAPPER) #define sb_has_wblist(sb) ((sb)->s_type->fs_flags & FS_HAS_WBLIST) /* * FIXME: These should be in include/linux/dcache.h but there * sb_has_dops_wrapper() is not available and compilation fails. This happens * as fs.h includes dcache.h and not other way around. So putting these * operations here for now. */ static inline const struct dentry_operations_wrapper *get_dop_wrapper(struct dentry *dentry) { if (!sb_has_dops_wrapper(dentry->d_sb)) return NULL; return container_of(dentry->d_op, const struct dentry_operations_wrapper, ops); } static inline dop_real_t get_real_dop(struct dentry *dentry) { const struct dentry_operations_wrapper *wrapper = get_dop_wrapper(dentry); if (!wrapper) return NULL; return (offsetof(struct dentry_operations_wrapper, d_real) < wrapper->size) ? wrapper->d_real : NULL; } /** * d_real - Return the real dentry * @dentry: the dentry to query * @inode: inode to select the dentry from multiple layers (can be NULL) * @flags: open flags to control copy-up behavior * * If dentry is on an union/overlay, then return the underlying, real dentry. * Otherwise return the dentry itself. * * See also: Documentation/filesystems/vfs.txt */ static inline struct dentry *d_real(struct dentry *dentry, const struct inode *inode, unsigned int flags) { if (unlikely(dentry->d_flags & DCACHE_OP_REAL)) { dop_real_t d_real_op = get_real_dop(dentry); return d_real_op(dentry, inode, flags); } else { return dentry; } } /** * d_real_inode - Return the real inode * @dentry: The dentry to query * * If dentry is on an union/overlay, then return the underlying, real inode. * Otherwise return d_inode(). */ static inline struct inode *d_real_inode(const struct dentry *dentry) { /* This usage of d_real() results in const dentry */ return d_real((struct dentry *) dentry, NULL, 0)->d_inode; } static inline struct dentry *file_dentry(const struct file *file) { return d_real(file->f_path.dentry, file_inode(file), 0); } /* * the fs address space operations contain a new invalidatepage_rang () op * which supports a length parameter */ #define inode_has_invalidate_range(inode) \ ((inode)->i_sb->s_type->fs_flags & FS_HAS_INVALIDATE_RANGE) #define MODULE_ALIAS_FS(NAME) MODULE_ALIAS("fs-" NAME) extern struct dentry *mount_ns(struct file_system_type *fs_type, int flags, void *data, void *ns, struct user_namespace *user_ns, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_bdev(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_single(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_nodev(struct file_system_type *fs_type, int flags, void *data, int (*fill_super)(struct super_block *, void *, int)); extern struct dentry *mount_subtree(struct vfsmount *mnt, const char *path); void generic_shutdown_super(struct super_block *sb); void kill_block_super(struct super_block *sb); void kill_anon_super(struct super_block *sb); void kill_litter_super(struct super_block *sb); void deactivate_super(struct super_block *sb); void deactivate_locked_super(struct super_block *sb); int set_anon_super(struct super_block *s, void *data); int get_anon_bdev(dev_t *); void free_anon_bdev(dev_t); struct super_block *sget_userns(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, struct user_namespace *user_ns, void *data); struct super_block *sget(struct file_system_type *type, int (*test)(struct super_block *,void *), int (*set)(struct super_block *,void *), int flags, void *data); extern struct dentry *mount_pseudo(struct file_system_type *, char *, const struct super_operations *ops, const struct dentry_operations *dops, unsigned long); /* Alas, no aliases. Too much hassle with bringing module.h everywhere */ #define fops_get(fops) \ (((fops) && try_module_get((fops)->owner) ? (fops) : NULL)) #define fops_put(fops) \ do { if (fops) module_put((fops)->owner); } while(0) /* * This one is to be used *ONLY* from ->open() instances. * fops must be non-NULL, pinned down *and* module dependencies * should be sufficient to pin the caller down as well. */ #define replace_fops(f, fops) \ do { \ struct file *__file = (f); \ fops_put(__file->f_op); \ BUG_ON(!(__file->f_op = (fops))); \ } while(0) extern int register_filesystem(struct file_system_type *); extern int unregister_filesystem(struct file_system_type *); /* Begin: Red Hat Internal Use Only */ extern int register_fo_extend(const struct file_operations_extend *fop); extern void unregister_fo_extend(const struct file_operations_extend *fop); extern const struct file_operations_extend *lookup_fo_extend( const struct file_operations *fops); static inline struct file_operations_extend * get_fo_extend(struct file *fp) { return (struct file_operations_extend *)lookup_fo_extend(fp->f_op); } /* End: Red Hat Internal Use Only */ extern struct vfsmount *kern_mount_data(struct file_system_type *, void *data); #define kern_mount(type) kern_mount_data(type, NULL) extern void kern_unmount(struct vfsmount *mnt); extern int may_umount_tree(struct vfsmount *); extern int may_umount(struct vfsmount *); extern long do_mount(const char *, const char __user *, const char *, unsigned long, void *); extern struct vfsmount *collect_mounts(const struct path *); extern void drop_collected_mounts(struct vfsmount *); extern int iterate_mounts(int (*)(struct vfsmount *, void *), void *, struct vfsmount *); extern int vfs_statfs(struct path *, struct kstatfs *); extern int user_statfs(const char __user *, struct kstatfs *); extern int fd_statfs(int, struct kstatfs *); extern int vfs_ustat(dev_t, struct kstatfs *); extern int freeze_super(struct super_block *super); extern int thaw_super(struct super_block *super); extern bool our_mnt(struct vfsmount *mnt); extern int current_umask(void); extern void ihold(struct inode * inode); extern void iput(struct inode *); /* /sys/fs */ extern struct kobject *fs_kobj; #define MAX_RW_COUNT (INT_MAX & PAGE_CACHE_MASK) extern int rw_verify_area(int, struct file *, loff_t *, size_t); #ifdef CONFIG_MANDATORY_FILE_LOCKING extern int locks_mandatory_locked(struct file *); extern int locks_mandatory_area(struct inode *, struct file *, loff_t, loff_t, unsigned char); /* * Candidates for mandatory locking have the setgid bit set * but no group execute bit - an otherwise meaningless combination. */ static inline int __mandatory_lock(struct inode *ino) { return (ino->i_mode & (S_ISGID | S_IXGRP)) == S_ISGID; } /* * ... and these candidates should be on MS_MANDLOCK mounted fs, * otherwise these will be advisory locks */ static inline int mandatory_lock(struct inode *ino) { return IS_MANDLOCK(ino) && __mandatory_lock(ino); } static inline int locks_verify_locked(struct file *file) { if (mandatory_lock(locks_inode(file))) return locks_mandatory_locked(file); return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *f, loff_t size) { if (!inode->i_flock || !mandatory_lock(inode)) return 0; if (size < inode->i_size) { return locks_mandatory_area(inode, f, size, inode->i_size - 1, F_WRLCK); } else { return locks_mandatory_area(inode, f, inode->i_size, size - 1, F_WRLCK); } } #else /* !CONFIG_MANDATORY_FILE_LOCKING */ static inline int locks_mandatory_locked(struct file *file) { return 0; } static inline int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, loff_t end, unsigned char type) { return 0; } static inline int __mandatory_lock(struct inode *inode) { return 0; } static inline int mandatory_lock(struct inode *inode) { return 0; } static inline int locks_verify_locked(struct file *file) { return 0; } static inline int locks_verify_truncate(struct inode *inode, struct file *filp, loff_t size) { return 0; } #endif /* CONFIG_MANDATORY_FILE_LOCKING */ #ifdef CONFIG_FILE_LOCKING static inline int break_lease(struct inode *inode, unsigned int mode) { /* * Since this check is lockless, we must ensure that any refcounts * taken are done before checking inode->i_flock. Otherwise, we could * end up racing with tasks trying to set a new lease on this file. */ smp_mb(); if (inode->i_flock) return __break_lease(inode, mode, FL_LEASE); return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { if (inode->i_flock) return __break_lease(inode, mode, FL_DELEG); return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { int ret; ret = break_deleg(inode, O_WRONLY|O_NONBLOCK); if (ret == -EWOULDBLOCK && delegated_inode) { *delegated_inode = inode; ihold(inode); } return ret; } static inline int break_deleg_wait(struct inode **delegated_inode) { int ret; ret = break_deleg(*delegated_inode, O_WRONLY); iput(*delegated_inode); *delegated_inode = NULL; return ret; } static inline int break_layout(struct inode *inode, bool wait) { smp_mb(); if (inode->i_flock) return __break_lease(inode, wait ? O_WRONLY : O_WRONLY | O_NONBLOCK, FL_LAYOUT); return 0; } #else /* !CONFIG_FILE_LOCKING */ static inline int break_lease(struct inode *inode, unsigned int mode) { return 0; } static inline int break_deleg(struct inode *inode, unsigned int mode) { return 0; } static inline int try_break_deleg(struct inode *inode, struct inode **delegated_inode) { return 0; } static inline int break_deleg_wait(struct inode **delegated_inode) { BUG(); return 0; } static inline int break_layout(struct inode *inode, bool wait) { return 0; } #endif /* CONFIG_FILE_LOCKING */ /* fs/open.c */ struct audit_names; struct filename { const char *name; /* pointer to actual string */ const __user char *uptr; /* original userland pointer */ struct audit_names *aname; bool separate; /* should "name" be freed? */ #ifndef __GENKSYMS__ int refcnt; #endif }; extern long vfs_truncate(struct path *, loff_t); extern int do_truncate(struct dentry *, loff_t start, unsigned int time_attrs, struct file *filp); extern int vfs_fallocate(struct file *file, int mode, loff_t offset, loff_t len); extern long do_sys_open(int dfd, const char __user *filename, int flags, umode_t mode); extern struct file *file_open_name(struct filename *, int, umode_t); extern struct file *filp_open(const char *, int, umode_t); extern struct file *file_open_root(struct dentry *, struct vfsmount *, const char *, int); extern int vfs_open(const struct path *, struct file *, const struct cred *); extern struct file * dentry_open(const struct path *, int, const struct cred *); extern int filp_close(struct file *, fl_owner_t id); extern struct filename *getname(const char __user *); extern struct filename *getname_kernel(const char *); extern void putname(struct filename *name); enum { FILE_CREATED = 1, FILE_OPENED = 2 }; extern int finish_open(struct file *file, struct dentry *dentry, int (*open)(struct inode *, struct file *), int *opened); extern int finish_no_open(struct file *file, struct dentry *dentry); /* fs/ioctl.c */ extern int ioctl_preallocate(struct file *filp, void __user *argp); /* fs/dcache.c */ extern void __init vfs_caches_init_early(void); extern void __init vfs_caches_init(void); extern struct kmem_cache *names_cachep; #define __getname() kmem_cache_alloc(names_cachep, GFP_KERNEL) #define __putname(name) kmem_cache_free(names_cachep, (void *)(name)) #ifdef CONFIG_BLOCK extern int register_blkdev(unsigned int, const char *); extern void unregister_blkdev(unsigned int, const char *); extern struct block_device *bdget(dev_t); extern struct block_device *bdgrab(struct block_device *bdev); extern void bd_set_size(struct block_device *, loff_t size); extern void bd_forget(struct inode *inode); extern void bdput(struct block_device *); extern void invalidate_bdev(struct block_device *); extern void iterate_bdevs(void (*)(struct block_device *, void *), void *); extern int sync_blockdev(struct block_device *bdev); extern void kill_bdev(struct block_device *); extern struct super_block *freeze_bdev(struct block_device *); extern void emergency_thaw_all(void); extern void emergency_thaw_bdev(struct super_block *sb); extern int thaw_bdev(struct block_device *bdev, struct super_block *sb); extern int fsync_bdev(struct block_device *); extern int sb_is_blkdev_sb(struct super_block *sb); #else static inline void bd_forget(struct inode *inode) {} static inline int sync_blockdev(struct block_device *bdev) { return 0; } static inline void kill_bdev(struct block_device *bdev) {} static inline void invalidate_bdev(struct block_device *bdev) {} static inline struct super_block *freeze_bdev(struct block_device *sb) { return NULL; } static inline int thaw_bdev(struct block_device *bdev, struct super_block *sb) { return 0; } static inline void iterate_bdevs(void (*f)(struct block_device *, void *), void *arg) { } static inline int sb_is_blkdev_sb(struct super_block *sb) { return 0; } #endif extern int sync_filesystem(struct super_block *); extern const struct file_operations def_blk_fops; extern const struct file_operations def_chr_fops; #ifdef CONFIG_BLOCK extern int ioctl_by_bdev(struct block_device *, unsigned, unsigned long); extern int blkdev_ioctl(struct block_device *, fmode_t, unsigned, unsigned long); extern long compat_blkdev_ioctl(struct file *, unsigned, unsigned long); extern int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder); extern struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, void *holder); extern struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); extern void blkdev_put(struct block_device *bdev, fmode_t mode); extern int __blkdev_reread_part(struct block_device *bdev); extern int blkdev_reread_part(struct block_device *bdev); #ifdef CONFIG_SYSFS extern int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); extern void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif #endif /* fs/char_dev.c */ #define CHRDEV_MAJOR_HASH_SIZE 255 extern int alloc_chrdev_region(dev_t *, unsigned, unsigned, const char *); extern int register_chrdev_region(dev_t, unsigned, const char *); extern int __register_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name, const struct file_operations *fops); extern void __unregister_chrdev(unsigned int major, unsigned int baseminor, unsigned int count, const char *name); extern void unregister_chrdev_region(dev_t, unsigned); extern void chrdev_show(struct seq_file *,off_t); static inline int register_chrdev(unsigned int major, const char *name, const struct file_operations *fops) { return __register_chrdev(major, 0, 256, name, fops); } static inline void unregister_chrdev(unsigned int major, const char *name) { __unregister_chrdev(major, 0, 256, name); } /* fs/block_dev.c */ #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ #ifdef CONFIG_BLOCK #define BLKDEV_MAJOR_HASH_SIZE 255 extern const char *__bdevname(dev_t, char *buffer); extern const char *bdevname(struct block_device *bdev, char *buffer); extern struct block_device *lookup_bdev(const char *); extern void blkdev_show(struct seq_file *,off_t); #else #define BLKDEV_MAJOR_HASH_SIZE 0 #endif extern void init_special_inode(struct inode *, umode_t, dev_t); /* Invalid inode operations -- fs/bad_inode.c */ extern void make_bad_inode(struct inode *); extern int is_bad_inode(struct inode *); #ifdef CONFIG_BLOCK /* * tmp cpmpat. Users used to set the write bit for all non reads, but * we will be dropping the bitmap use for ops. Support both until * the end of the patchset. */ static inline bool op_is_write(unsigned long flags) { if (flags & (REQ_OP_WRITE | REQ_OP_WRITE_SAME | REQ_OP_DISCARD)) return true; else return false; } /* * return READ, READA, or WRITE */ static inline int bio_rw(struct bio *bio) { if (op_is_write(op_from_rq_bits(bio->bi_rw))) return WRITE; return bio->bi_rw & RWA_MASK; } /* * return data direction, READ or WRITE */ static inline int bio_data_dir(struct bio *bio) { return op_is_write(op_from_rq_bits(bio->bi_rw)) ? WRITE : READ; } extern void check_disk_size_change(struct gendisk *disk, struct block_device *bdev); extern int revalidate_disk(struct gendisk *); extern int check_disk_change(struct block_device *); extern int __invalidate_device(struct block_device *, bool); extern int invalidate_partition(struct gendisk *, int); #endif unsigned long invalidate_mapping_pages(struct address_space *mapping, pgoff_t start, pgoff_t end); static inline void invalidate_remote_inode(struct inode *inode) { if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) invalidate_mapping_pages(inode->i_mapping, 0, -1); } extern int invalidate_inode_pages2(struct address_space *mapping); extern int invalidate_inode_pages2_range(struct address_space *mapping, pgoff_t start, pgoff_t end); extern int write_inode_now(struct inode *, int); extern int filemap_fdatawrite(struct address_space *); extern int filemap_flush(struct address_space *); extern int filemap_fdatawait(struct address_space *); extern void filemap_fdatawait_keep_errors(struct address_space *); extern int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); extern int filemap_write_and_wait(struct address_space *mapping); extern int filemap_write_and_wait_range(struct address_space *mapping, loff_t lstart, loff_t lend); extern int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end, int sync_mode); extern int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, loff_t end); extern int filemap_check_errors(struct address_space *mapping); extern int vfs_fsync_range(struct file *file, loff_t start, loff_t end, int datasync); extern int vfs_fsync(struct file *file, int datasync); extern int generic_write_sync(struct file *file, loff_t pos, loff_t count); extern void emergency_sync(void); extern void emergency_remount(void); #ifdef CONFIG_BLOCK extern sector_t bmap(struct inode *, sector_t); #endif extern int notify_change(struct dentry *, struct iattr *, struct inode **); extern int inode_permission(struct inode *, int); extern int __inode_permission(struct inode *, int); extern int generic_permission(struct inode *, int); extern int __check_sticky(struct inode *dir, struct inode *inode); static inline bool execute_ok(struct inode *inode) { return (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode); } static inline void file_start_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); } static inline bool file_start_write_trylock(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return true; return __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, false); } static inline void file_end_write(struct file *file) { if (!S_ISREG(file_inode(file)->i_mode)) return; __sb_end_write(file_inode(file)->i_sb, SB_FREEZE_WRITE); } /* * get_write_access() gets write permission for a file. * put_write_access() releases this write permission. * This is used for regular files. * We cannot support write (and maybe mmap read-write shared) accesses and * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode * can have the following values: * 0: no writers, no VM_DENYWRITE mappings * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist * > 0: (i_writecount) users are writing to the file. * * Normally we operate on that counter with atomic_{inc,dec} and it's safe * except for the cases where we don't hold i_writecount yet. Then we need to * use {get,deny}_write_access() - these functions check the sign and refuse * to do the change if sign is wrong. */ static inline int get_write_access(struct inode *inode) { return atomic_inc_unless_negative(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline int deny_write_access(struct file *file) { struct inode *inode = file_inode(file); return atomic_dec_unless_positive(&inode->i_writecount) ? 0 : -ETXTBSY; } static inline void put_write_access(struct inode * inode) { atomic_dec(&inode->i_writecount); } static inline void allow_write_access(struct file *file) { if (file) atomic_inc(&file_inode(file)->i_writecount); } static inline bool inode_is_open_for_write(const struct inode *inode) { return atomic_read(&inode->i_writecount) > 0; } #ifdef CONFIG_IMA static inline void i_readcount_dec(struct inode *inode) { BUG_ON(!atomic_read(&inode->i_readcount)); atomic_dec(&inode->i_readcount); } static inline void i_readcount_inc(struct inode *inode) { atomic_inc(&inode->i_readcount); } #else static inline void i_readcount_dec(struct inode *inode) { return; } static inline void i_readcount_inc(struct inode *inode) { return; } #endif extern int do_pipe_flags(int *, int); extern int kernel_read(struct file *, loff_t, char *, unsigned long); extern ssize_t kernel_write(struct file *, const char *, size_t, loff_t); extern ssize_t __kernel_write(struct file *, const char *, size_t, loff_t *); extern struct file * open_exec(const char *); /* fs/dcache.c -- generic fs support functions */ extern int is_subdir(struct dentry *, struct dentry *); extern bool path_is_under(const struct path *, const struct path *); extern ino_t find_inode_number(struct dentry *, struct qstr *); #include <linux/err.h> /* needed for stackable file system support */ extern loff_t default_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_llseek(struct file *file, loff_t offset, int whence); extern int inode_init_always(struct super_block *, struct inode *); extern void inode_init_once(struct inode *); extern void address_space_init_once(struct address_space *mapping); extern struct inode * igrab(struct inode *); extern ino_t iunique(struct super_block *, ino_t); extern int inode_needs_sync(struct inode *inode); extern int generic_delete_inode(struct inode *inode); static inline int generic_drop_inode(struct inode *inode) { return !inode->i_nlink || inode_unhashed(inode); } extern struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup5(struct super_block *sb, unsigned long hashval, int (*test)(struct inode *, void *), void *data); extern struct inode *ilookup(struct super_block *sb, unsigned long ino); extern struct inode * iget5_locked(struct super_block *, unsigned long, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *); extern struct inode * iget_locked(struct super_block *, unsigned long); extern int insert_inode_locked4(struct inode *, unsigned long, int (*test)(struct inode *, void *), void *); extern int insert_inode_locked(struct inode *); #ifdef CONFIG_DEBUG_LOCK_ALLOC extern void lockdep_annotate_inode_mutex_key(struct inode *inode); #else static inline void lockdep_annotate_inode_mutex_key(struct inode *inode) { }; #endif extern void unlock_new_inode(struct inode *); extern unsigned int get_next_ino(void); extern void __iget(struct inode * inode); extern void iget_failed(struct inode *); extern void clear_inode(struct inode *); extern void __destroy_inode(struct inode *); extern struct inode *new_inode_pseudo(struct super_block *sb); extern struct inode *new_inode(struct super_block *sb); extern void free_inode_nonrcu(struct inode *inode); extern int should_remove_suid(struct dentry *); extern int file_remove_privs(struct file *); extern int dentry_needs_remove_privs(struct dentry *dentry); static inline int file_needs_remove_privs(struct file *file) { return dentry_needs_remove_privs(file->f_path.dentry); } extern void __insert_inode_hash(struct inode *, unsigned long hashval); static inline void insert_inode_hash(struct inode *inode) { __insert_inode_hash(inode, inode->i_ino); } extern void __remove_inode_hash(struct inode *); static inline void remove_inode_hash(struct inode *inode) { if (!inode_unhashed(inode)) __remove_inode_hash(inode); } extern void inode_sb_list_add(struct inode *inode); #ifdef CONFIG_BLOCK extern void submit_bio(int, struct bio *); extern int bdev_read_only(struct block_device *); #endif extern int set_blocksize(struct block_device *, int); extern int sb_set_blocksize(struct super_block *, int); extern int sb_min_blocksize(struct super_block *, int); extern int generic_file_mmap(struct file *, struct vm_area_struct *); extern int generic_file_readonly_mmap(struct file *, struct vm_area_struct *); extern int generic_file_remap_pages(struct vm_area_struct *, unsigned long addr, unsigned long size, pgoff_t pgoff); extern int file_read_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size); int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk); extern ssize_t generic_file_aio_read(struct kiocb *, const struct iovec *, unsigned long, loff_t); extern ssize_t __generic_file_aio_write(struct kiocb *, const struct iovec *, unsigned long, loff_t *); extern ssize_t generic_file_aio_write(struct kiocb *, const struct iovec *, unsigned long, loff_t); extern ssize_t generic_file_direct_write(struct kiocb *, const struct iovec *, unsigned long *, loff_t, loff_t *, size_t, size_t); extern ssize_t generic_file_buffered_write(struct kiocb *, const struct iovec *, unsigned long, loff_t, loff_t *, size_t, ssize_t); extern ssize_t do_sync_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos); extern ssize_t do_sync_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos); extern int generic_segment_checks(const struct iovec *iov, unsigned long *nr_segs, size_t *count, int access_flags); /* fs/block_dev.c */ extern ssize_t blkdev_aio_read(struct kiocb *, const struct iovec *, unsigned long, loff_t); extern ssize_t blkdev_aio_write(struct kiocb *iocb, const struct iovec *iov, unsigned long nr_segs, loff_t pos); extern int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync); extern void block_sync_page(struct page *page); /* fs/splice.c */ extern ssize_t generic_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t default_file_splice_read(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); extern ssize_t generic_file_splice_write(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); extern ssize_t default_file_splice_write(struct pipe_inode_info *pipe, struct file *out, loff_t *ppos, size_t len, unsigned int flags); extern ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out, loff_t *, size_t len, unsigned int flags); extern long do_splice_direct(struct file *in, loff_t *ppos, struct file *out, loff_t *opos, size_t len, unsigned int flags); extern void file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping); extern loff_t noop_llseek(struct file *file, loff_t offset, int whence); extern loff_t no_llseek(struct file *file, loff_t offset, int whence); extern loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize); extern loff_t generic_file_llseek(struct file *file, loff_t offset, int whence); extern loff_t generic_file_llseek_size(struct file *file, loff_t offset, int whence, loff_t maxsize, loff_t eof); extern loff_t fixed_size_llseek(struct file *file, loff_t offset, int whence, loff_t size); extern loff_t no_seek_end_llseek_size(struct file *, loff_t, int, loff_t); extern loff_t no_seek_end_llseek(struct file *, loff_t, int); extern int generic_file_open(struct inode * inode, struct file * filp); extern int nonseekable_open(struct inode * inode, struct file * filp); #ifdef CONFIG_BLOCK typedef void (dio_submit_t)(int rw, struct bio *bio, struct inode *inode, loff_t file_offset); enum { /* need locking between buffered and direct access */ DIO_LOCKING = 0x01, /* filesystem does not support filling holes */ DIO_SKIP_HOLES = 0x02, /* inode/fs/bdev does not need truncate protection */ DIO_SKIP_DIO_COUNT = 0x04, /* filesystem can handle aio writes beyond i_size */ DIO_ASYNC_EXTEND = 0x08, }; void dio_end_io(struct bio *bio, int error); ssize_t __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, struct block_device *bdev, const struct iovec *iov, loff_t offset, unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io, dio_submit_t submit_io, int flags); static inline ssize_t blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, const struct iovec *iov, loff_t offset, unsigned long nr_segs, get_block_t get_block) { return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov, offset, nr_segs, get_block, NULL, NULL, DIO_LOCKING | DIO_SKIP_HOLES); } #endif void inode_dio_wait(struct inode *inode); void inode_dio_done(struct inode *inode); /* * inode_dio_begin - signal start of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_begin(struct inode *inode) { atomic_inc(&inode->i_dio_count); } /* * inode_dio_end - signal finish of a direct I/O requests * @inode: inode the direct I/O happens on * * This is called once we've finished processing a direct I/O request, * and is used to wake up callers waiting for direct I/O to be quiesced. */ static inline void inode_dio_end(struct inode *inode) { if (atomic_dec_and_test(&inode->i_dio_count)) wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); } extern void inode_set_flags(struct inode *inode, unsigned int flags, unsigned int mask); extern const struct file_operations generic_ro_fops; #define special_file(m) (S_ISCHR(m)||S_ISBLK(m)||S_ISFIFO(m)||S_ISSOCK(m)) extern int vfs_readlink(struct dentry *, char __user *, int, const char *); extern int vfs_follow_link(struct nameidata *, const char *); extern int page_readlink(struct dentry *, char __user *, int); extern void *page_follow_link_light(struct dentry *, struct nameidata *); extern void page_put_link(struct dentry *, struct nameidata *, void *); extern int __page_symlink(struct inode *inode, const char *symname, int len, int nofs); extern int page_symlink(struct inode *inode, const char *symname, int len); extern const struct inode_operations page_symlink_inode_operations; extern void kfree_put_link(struct dentry *, struct nameidata *, void *); extern int generic_readlink(struct dentry *, char __user *, int); extern void generic_fillattr(struct inode *, struct kstat *); extern int vfs_getattr(struct path *, struct kstat *); void __inode_add_bytes(struct inode *inode, loff_t bytes); void inode_add_bytes(struct inode *inode, loff_t bytes); void __inode_sub_bytes(struct inode *inode, loff_t bytes); void inode_sub_bytes(struct inode *inode, loff_t bytes); loff_t inode_get_bytes(struct inode *inode); void inode_set_bytes(struct inode *inode, loff_t bytes); extern int iterate_dir(struct file *, struct dir_context *); extern int vfs_stat(const char __user *, struct kstat *); extern int vfs_lstat(const char __user *, struct kstat *); extern int vfs_fstat(unsigned int, struct kstat *); extern int vfs_fstatat(int , const char __user *, struct kstat *, int); extern int do_vfs_ioctl(struct file *filp, unsigned int fd, unsigned int cmd, unsigned long arg); extern int __generic_block_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, loff_t start, loff_t len, get_block_t *get_block); extern int generic_block_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, u64 start, u64 len, get_block_t *get_block); extern void get_filesystem(struct file_system_type *fs); extern void put_filesystem(struct file_system_type *fs); extern struct file_system_type *get_fs_type(const char *name); extern struct super_block *get_super(struct block_device *); extern struct super_block *get_super_thawed(struct block_device *); extern struct super_block *get_active_super(struct block_device *bdev); extern void drop_super(struct super_block *sb); extern void iterate_supers(void (*)(struct super_block *, void *), void *); extern void iterate_supers_type(struct file_system_type *, void (*)(struct super_block *, void *), void *); extern int dcache_dir_open(struct inode *, struct file *); extern int dcache_dir_close(struct inode *, struct file *); extern loff_t dcache_dir_lseek(struct file *, loff_t, int); extern int dcache_readdir(struct file *, void *, filldir_t); extern int simple_setattr(struct dentry *, struct iattr *); extern int simple_getattr(struct vfsmount *, struct dentry *, struct kstat *); extern int simple_statfs(struct dentry *, struct kstatfs *); extern int simple_open(struct inode *inode, struct file *file); extern int simple_link(struct dentry *, struct inode *, struct dentry *); extern int simple_unlink(struct inode *, struct dentry *); extern int simple_rmdir(struct inode *, struct dentry *); extern int simple_rename(struct inode *, struct dentry *, struct inode *, struct dentry *); extern int noop_fsync(struct file *, loff_t, loff_t, int); extern int noop_set_page_dirty(struct page *page); extern void noop_invalidatepage_range(struct page *page, unsigned int offset, unsigned int length); extern ssize_t noop_direct_IO(int rw, struct kiocb *kiocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs); extern int simple_empty(struct dentry *); extern int simple_readpage(struct file *file, struct page *page); extern int simple_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata); extern int simple_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata); extern struct inode *alloc_anon_inode(struct super_block *); extern int simple_nosetlease(struct file *, long, struct file_lock **, void **); extern const struct dentry_operations simple_dentry_operations; extern struct dentry *simple_lookup(struct inode *, struct dentry *, unsigned int flags); extern ssize_t generic_read_dir(struct file *, char __user *, size_t, loff_t *); extern const struct file_operations simple_dir_operations; extern const struct inode_operations simple_dir_inode_operations; extern void make_empty_dir_inode(struct inode *inode); extern bool is_empty_dir_inode(struct inode *inode); struct tree_descr { char *name; const struct file_operations *ops; int mode; }; struct dentry *d_alloc_name(struct dentry *, const char *); extern int simple_fill_super(struct super_block *, unsigned long, struct tree_descr *); extern int simple_pin_fs(struct file_system_type *, struct vfsmount **mount, int *count); extern void simple_release_fs(struct vfsmount **mount, int *count); extern ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, const void *from, size_t available); extern ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, const void __user *from, size_t count); extern int generic_file_fsync(struct file *, loff_t, loff_t, int); extern int generic_check_addressable(unsigned, u64); #ifdef CONFIG_MIGRATION extern int buffer_migrate_page(struct address_space *, struct page *, struct page *, enum migrate_mode); #else #define buffer_migrate_page NULL #endif extern int inode_change_ok(const struct inode *, struct iattr *); extern int inode_newsize_ok(const struct inode *, loff_t offset); extern void setattr_copy(struct inode *inode, const struct iattr *attr); extern int file_update_time(struct file *file); extern int generic_show_options(struct seq_file *m, struct dentry *root); extern void save_mount_options(struct super_block *sb, char *options); extern void replace_mount_options(struct super_block *sb, char *options); static inline bool io_is_direct(struct file *filp) { return (filp->f_flags & O_DIRECT) || IS_DAX(filp->f_mapping->host); } static inline bool vma_is_dax(struct vm_area_struct *vma) { return vma->vm_file && IS_DAX(vma->vm_file->f_mapping->host); } static inline bool vma_is_fsdax(struct vm_area_struct *vma) { struct inode *inode; if (!vma->vm_file) return false; if (!vma_is_dax(vma)) return false; inode = file_inode(vma->vm_file); if (S_ISCHR(inode->i_mode)) return false; /* device-dax */ return true; } static inline ino_t parent_ino(struct dentry *dentry) { ino_t res; /* * Don't strictly need d_lock here? If the parent ino could change * then surely we'd have a deeper race in the caller? */ spin_lock(&dentry->d_lock); res = dentry->d_parent->d_inode->i_ino; spin_unlock(&dentry->d_lock); return res; } /* Transaction based IO helpers */ /* * An argresp is stored in an allocated page and holds the * size of the argument or response, along with its content */ struct simple_transaction_argresp { ssize_t size; char data[0]; }; #define SIMPLE_TRANSACTION_LIMIT (PAGE_SIZE - sizeof(struct simple_transaction_argresp)) char *simple_transaction_get(struct file *file, const char __user *buf, size_t size); ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos); int simple_transaction_release(struct inode *inode, struct file *file); void simple_transaction_set(struct file *file, size_t n); /* * simple attribute files * * These attributes behave similar to those in sysfs: * * Writing to an attribute immediately sets a value, an open file can be * written to multiple times. * * Reading from an attribute creates a buffer from the value that might get * read with multiple read calls. When the attribute has been read * completely, no further read calls are possible until the file is opened * again. * * All attributes contain a text representation of a numeric value * that are accessed with the get() and set() functions. */ #define DEFINE_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \ static int __fops ## _open(struct inode *inode, struct file *file) \ { \ __simple_attr_check_format(__fmt, 0ull); \ return simple_attr_open(inode, file, __get, __set, __fmt); \ } \ static const struct file_operations __fops = { \ .owner = THIS_MODULE, \ .open = __fops ## _open, \ .release = simple_attr_release, \ .read = simple_attr_read, \ .write = simple_attr_write, \ .llseek = generic_file_llseek, \ }; static inline __printf(1, 2) void __simple_attr_check_format(const char *fmt, ...) { /* don't do anything, just let the compiler check the arguments; */ } int simple_attr_open(struct inode *inode, struct file *file, int (*get)(void *, u64 *), int (*set)(void *, u64), const char *fmt); int simple_attr_release(struct inode *inode, struct file *file); ssize_t simple_attr_read(struct file *file, char __user *buf, size_t len, loff_t *ppos); ssize_t simple_attr_write(struct file *file, const char __user *buf, size_t len, loff_t *ppos); struct ctl_table; int proc_nr_files(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); int proc_nr_inodes(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos); int __init get_filesystem_list(char *buf); #define __FMODE_EXEC ((__force int) FMODE_EXEC) #define __FMODE_NONOTIFY ((__force int) FMODE_NONOTIFY) #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE]) #define OPEN_FMODE(flag) ((__force fmode_t)(((flag + 1) & O_ACCMODE) | \ (flag & __FMODE_NONOTIFY))) static inline int is_sxid(umode_t mode) { return (mode & S_ISUID) || ((mode & S_ISGID) && (mode & S_IXGRP)); } static inline int check_sticky(struct inode *dir, struct inode *inode) { if (!(dir->i_mode & S_ISVTX)) return 0; return __check_sticky(dir, inode); } static inline void inode_has_no_xattr(struct inode *inode) { if (!is_sxid(inode->i_mode) && (inode->i_sb->s_flags & MS_NOSEC)) inode->i_flags |= S_NOSEC; } static inline bool dir_emit(struct dir_context *ctx, const char *name, int namelen, u64 ino, unsigned type) { return ctx->actor(ctx, name, namelen, ctx->pos, ino, type) == 0; } static inline bool dir_emit_dot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, ".", 1, ctx->pos, file->f_path.dentry->d_inode->i_ino, DT_DIR) == 0; } static inline bool dir_emit_dotdot(struct file *file, struct dir_context *ctx) { return ctx->actor(ctx, "..", 2, ctx->pos, parent_ino(file->f_path.dentry), DT_DIR) == 0; } static inline bool dir_emit_dots(struct file *file, struct dir_context *ctx) { if (ctx->pos == 0) { if (!dir_emit_dot(file, ctx)) return false; ctx->pos = 1; } if (ctx->pos == 1) { if (!dir_emit_dotdot(file, ctx)) return false; ctx->pos = 2; } return true; } static inline const struct inode_operations_wrapper *get_iop_wrapper(struct inode *inode, unsigned version) { const struct inode_operations_wrapper *wrapper; if (!IS_IOPS_WRAPPER(inode)) return NULL; wrapper = container_of(inode->i_op, const struct inode_operations_wrapper, ops); if (wrapper->version < version) return NULL; return wrapper; } static inline iop_rename2_t get_rename2_iop(struct inode *inode) { const struct inode_operations_wrapper *wrapper = get_iop_wrapper(inode, 0); return wrapper ? wrapper->rename2 : NULL; } static inline iop_tmpfile_t get_tmpfile_iop(struct inode *inode) { const struct inode_operations_wrapper *wrapper = get_iop_wrapper(inode, 0); return wrapper ? wrapper->tmpfile : NULL; } static inline iop_dentry_open_t get_dentry_open_iop(struct inode *inode) { const struct inode_operations_wrapper *wrapper = get_iop_wrapper(inode, 0); return wrapper ? wrapper->dentry_open : NULL; } extern bool path_noexec(const struct path *path); #endif /* _LINUX_FS_H */