GIF89a;
Direktori : /lib/modules/3.10.0-957.21.3.el7.centos.plus.x86_64/source/include/asm-generic/ |
Current File : //lib/modules/3.10.0-957.21.3.el7.centos.plus.x86_64/source/include/asm-generic/tlb.h |
/* include/asm-generic/tlb.h * * Generic TLB shootdown code * * Copyright 2001 Red Hat, Inc. * Based on code from mm/memory.c Copyright Linus Torvalds and others. * * Copyright 2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _ASM_GENERIC__TLB_H #define _ASM_GENERIC__TLB_H #include <linux/swap.h> #include <asm/pgalloc.h> #include <asm/tlbflush.h> #ifdef CONFIG_HAVE_RCU_TABLE_FREE /* * Semi RCU freeing of the page directories. * * This is needed by some architectures to implement software pagetable walkers. * * gup_fast() and other software pagetable walkers do a lockless page-table * walk and therefore needs some synchronization with the freeing of the page * directories. The chosen means to accomplish that is by disabling IRQs over * the walk. * * Architectures that use IPIs to flush TLBs will then automagically DTRT, * since we unlink the page, flush TLBs, free the page. Since the disabling of * IRQs delays the completion of the TLB flush we can never observe an already * freed page. * * Architectures that do not have this (PPC) need to delay the freeing by some * other means, this is that means. * * What we do is batch the freed directory pages (tables) and RCU free them. * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling * holds off grace periods. * * However, in order to batch these pages we need to allocate storage, this * allocation is deep inside the MM code and can thus easily fail on memory * pressure. To guarantee progress we fall back to single table freeing, see * the implementation of tlb_remove_table_one(). * */ struct mmu_table_batch { struct rcu_head rcu; unsigned int nr; void *tables[0]; }; #define MAX_TABLE_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *)) extern void tlb_table_flush(struct mmu_gather *tlb); extern void tlb_remove_table(struct mmu_gather *tlb, void *table); #endif /* * If we can't allocate a page to make a big batch of page pointers * to work on, then just handle a few from the on-stack structure. */ #define MMU_GATHER_BUNDLE 8 struct mmu_gather_batch { struct mmu_gather_batch *next; unsigned int nr; unsigned int max; struct page *pages[0]; }; #define MAX_GATHER_BATCH \ ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *)) /* * Limit the maximum number of mmu_gather batches to reduce a risk of soft * lockups for non-preemptible kernels on huge machines when a lot of memory * is zapped during unmapping. * 10K pages freed at once should be safe even without a preemption point. */ #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH) /* struct mmu_gather is an opaque type used by the mm code for passing around * any data needed by arch specific code for tlb_remove_page. */ struct mmu_gather { struct mm_struct *mm; #ifdef CONFIG_HAVE_RCU_TABLE_FREE struct mmu_table_batch *batch; #endif unsigned long start; unsigned long end; unsigned int need_flush : 1, /* Did free PTEs */ /* we are in the middle of an operation to clear * a full mm and can make some optimizations */ fullmm : 1, /* we have performed an operation which * requires a complete flush of the tlb */ need_flush_all : 1; struct mmu_gather_batch *active; struct mmu_gather_batch local; struct page *__pages[MMU_GATHER_BUNDLE]; unsigned int batch_count; }; #define HAVE_GENERIC_MMU_GATHER void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end); void tlb_flush_mmu(struct mmu_gather *tlb); void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end); int __tlb_remove_page(struct mmu_gather *tlb, struct page *page); /* tlb_remove_page * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when * required. */ static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page) { if (!__tlb_remove_page(tlb, page)) tlb_flush_mmu(tlb); } /** * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation. * * Record the fact that pte's were really umapped in ->need_flush, so we can * later optimise away the tlb invalidate. This helps when userspace is * unmapping already-unmapped pages, which happens quite a lot. */ #define tlb_remove_tlb_entry(tlb, ptep, address) \ do { \ tlb->need_flush = 1; \ __tlb_remove_tlb_entry(tlb, ptep, address); \ } while (0) /** * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation * This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pmd_tlb_entry #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0) #endif #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \ do { \ tlb->need_flush = 1; \ __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \ } while (0) /** * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb * invalidation. This is a nop so far, because only x86 needs it. */ #ifndef __tlb_remove_pud_tlb_entry #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0) #endif #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \ do { \ tlb->need_flush = 1; \ __tlb_remove_pud_tlb_entry(tlb, pudp, address); \ } while (0) #define pte_free_tlb(tlb, ptep, address) \ do { \ tlb->need_flush = 1; \ __pte_free_tlb(tlb, ptep, address); \ } while (0) #ifndef __ARCH_HAS_4LEVEL_HACK #define pud_free_tlb(tlb, pudp, address) \ do { \ tlb->need_flush = 1; \ __pud_free_tlb(tlb, pudp, address); \ } while (0) #endif #define pmd_free_tlb(tlb, pmdp, address) \ do { \ tlb->need_flush = 1; \ __pmd_free_tlb(tlb, pmdp, address); \ } while (0) #define tlb_migrate_finish(mm) do {} while (0) #endif /* _ASM_GENERIC__TLB_H */