GIF89a;
Direktori : /lib/modules/3.10.0-1160.83.1.el7.centos.plus.x86_64/build/include/crypto/ |
Current File : //lib/modules/3.10.0-1160.83.1.el7.centos.plus.x86_64/build/include/crypto/sha256_base.h |
/* * sha256_base.h - core logic for SHA-256 implementations * * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include <crypto/internal/hash.h> #include <crypto/sha.h> #include <linux/crypto.h> #include <linux/module.h> #include <asm/unaligned.h> typedef void (sha256_block_fn)(struct sha256_state *sst, u8 const *src, int blocks); static inline int sha224_base_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA224_H0; sctx->state[1] = SHA224_H1; sctx->state[2] = SHA224_H2; sctx->state[3] = SHA224_H3; sctx->state[4] = SHA224_H4; sctx->state[5] = SHA224_H5; sctx->state[6] = SHA224_H6; sctx->state[7] = SHA224_H7; sctx->count = 0; return 0; } static inline int sha256_base_init(struct shash_desc *desc) { struct sha256_state *sctx = shash_desc_ctx(desc); sctx->state[0] = SHA256_H0; sctx->state[1] = SHA256_H1; sctx->state[2] = SHA256_H2; sctx->state[3] = SHA256_H3; sctx->state[4] = SHA256_H4; sctx->state[5] = SHA256_H5; sctx->state[6] = SHA256_H6; sctx->state[7] = SHA256_H7; sctx->count = 0; return 0; } static inline int sha256_base_do_update(struct shash_desc *desc, const u8 *data, unsigned int len, sha256_block_fn *block_fn) { struct sha256_state *sctx = shash_desc_ctx(desc); unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; sctx->count += len; if (unlikely((partial + len) >= SHA256_BLOCK_SIZE)) { int blocks; if (partial) { int p = SHA256_BLOCK_SIZE - partial; memcpy(sctx->buf + partial, data, p); data += p; len -= p; block_fn(sctx, sctx->buf, 1); } blocks = len / SHA256_BLOCK_SIZE; len %= SHA256_BLOCK_SIZE; if (blocks) { block_fn(sctx, data, blocks); data += blocks * SHA256_BLOCK_SIZE; } partial = 0; } if (len) memcpy(sctx->buf + partial, data, len); return 0; } static inline int sha256_base_do_finalize(struct shash_desc *desc, sha256_block_fn *block_fn) { const int bit_offset = SHA256_BLOCK_SIZE - sizeof(__be64); struct sha256_state *sctx = shash_desc_ctx(desc); __be64 *bits = (__be64 *)(sctx->buf + bit_offset); unsigned int partial = sctx->count % SHA256_BLOCK_SIZE; sctx->buf[partial++] = 0x80; if (partial > bit_offset) { memset(sctx->buf + partial, 0x0, SHA256_BLOCK_SIZE - partial); partial = 0; block_fn(sctx, sctx->buf, 1); } memset(sctx->buf + partial, 0x0, bit_offset - partial); *bits = cpu_to_be64(sctx->count << 3); block_fn(sctx, sctx->buf, 1); return 0; } static inline int sha256_base_finish(struct shash_desc *desc, u8 *out) { unsigned int digest_size = crypto_shash_digestsize(desc->tfm); struct sha256_state *sctx = shash_desc_ctx(desc); __be32 *digest = (__be32 *)out; int i; for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be32)) put_unaligned_be32(sctx->state[i], digest++); *sctx = (struct sha256_state){}; return 0; }