GIF89a;
Direktori : /lib/modules/3.10.0-1160.81.1.el7.centos.plus.x86_64/source/arch/x86/include/asm/ |
Current File : //lib/modules/3.10.0-1160.81.1.el7.centos.plus.x86_64/source/arch/x86/include/asm/tlbflush.h |
#ifndef _ASM_X86_TLBFLUSH_H #define _ASM_X86_TLBFLUSH_H #include <linux/mm.h> #include <linux/sched.h> #include <asm/processor.h> #include <asm/cpufeature.h> #include <asm/special_insns.h> #ifdef CONFIG_PARAVIRT #include <asm/paravirt.h> #else #define __flush_tlb() __native_flush_tlb() #define __flush_tlb_global() __native_flush_tlb_global() #define __flush_tlb_single(addr) __native_flush_tlb_single(addr) #endif static inline void __invpcid(unsigned long pcid, unsigned long addr, unsigned long type) { struct { u64 d[2]; } desc = { { pcid, addr } }; /* * The memory clobber is because the whole point is to invalidate * stale TLB entries and, especially if we're flushing global * mappings, we don't want the compiler to reorder any subsequent * memory accesses before the TLB flush. * * The hex opcode is invpcid (%ecx), %eax in 32-bit mode and * invpcid (%rcx), %rax in long mode. */ asm volatile (".byte 0x66, 0x0f, 0x38, 0x82, 0x01" : : "m" (desc), "a" (type), "c" (&desc) : "memory"); } #define INVPCID_TYPE_INDIV_ADDR 0 #define INVPCID_TYPE_SINGLE_CTXT 1 #define INVPCID_TYPE_ALL_INCL_GLOBAL 2 #define INVPCID_TYPE_ALL_NON_GLOBAL 3 /* Flush all mappings for a given pcid and addr, not including globals. */ static inline void invpcid_flush_one(unsigned long pcid, unsigned long addr) { __invpcid(pcid, addr, INVPCID_TYPE_INDIV_ADDR); } /* Flush all mappings for a given PCID, not including globals. */ static inline void invpcid_flush_single_context(unsigned long pcid) { __invpcid(pcid, 0, INVPCID_TYPE_SINGLE_CTXT); } /* Flush all mappings, including globals, for all PCIDs. */ static inline void invpcid_flush_all(void) { __invpcid(0, 0, INVPCID_TYPE_ALL_INCL_GLOBAL); } /* Flush all mappings for all PCIDs except globals. */ static inline void invpcid_flush_all_nonglobals(void) { __invpcid(0, 0, INVPCID_TYPE_ALL_NON_GLOBAL); } #ifdef CONFIG_PAGE_TABLE_ISOLATION /* * RHEL7 Only */ #ifdef CONFIG_EFI /* * Test whether this is the EFI pgd_t CR3 value used for EFI runtime services */ static inline bool is_efi_pgd_cr3(unsigned long cr3) { extern unsigned long efi_pgd_cr3; return cr3 == efi_pgd_cr3; } #else static inline bool is_efi_pgd_cr3(unsigned long cr3) { return false; } #endif static __always_inline void __load_cr3(unsigned long cr3) { if (static_cpu_has(X86_FEATURE_PCID) && kaiser_active()) { unsigned long shadow_cr3; VM_WARN_ON(cr3 & KAISER_SHADOW_PCID_ASID); VM_WARN_ON(cr3 & (1<<KAISER_PGTABLE_SWITCH_BIT)); VM_WARN_ON(cr3 & X86_CR3_PCID_NOFLUSH); if (this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) { invpcid_flush_single_context(KAISER_SHADOW_PCID_ASID); write_cr3(cr3); return; } /* * RHEL7 Only * The EFI pgd, which maps UEFI runtime services code and data * in addition to kernel space but no userspace, does not have * a shadow pgd. This exclusion is "RHEL7 Only" because the * subsequent performance optimization for processors with the * PCID feature but without INVPCID_SINGLE is also RHEL7 only. */ if (is_efi_pgd_cr3(cr3)) { write_cr3(cr3); return; } shadow_cr3 = cr3 | (1<<KAISER_PGTABLE_SWITCH_BIT) | KAISER_SHADOW_PCID_ASID; asm volatile("\tjmp 1f\n\t" "2:\n\t" ".section .entry.text, \"ax\"\n\t" "1:\n\t" "pushf\n\t" "cli\n\t" "movq %0, %%cr3\n\t" "movq %1, %%cr3\n\t" "popf\n\t" "jmp 2b\n\t" ".previous" : : "r" (shadow_cr3), "r" (cr3) : "memory"); } else write_cr3(cr3); } #else /* CONFIG_PAGE_TABLE_ISOLATION */ static __always_inline void __load_cr3(unsigned long cr3) { write_cr3(cr3); } #endif /* CONFIG_PAGE_TABLE_ISOLATION */ static inline void __native_flush_tlb(void) { if (!static_cpu_has(X86_FEATURE_INVPCID)) { __load_cr3(native_read_cr3()); return; } /* * Note, this works with CR4.PCIDE=0 or 1. */ invpcid_flush_all_nonglobals(); } static inline void __native_flush_tlb_global_irq_disabled(void) { unsigned long cr4; cr4 = native_read_cr4(); /* * This function is only called on systems that support X86_CR4_PGE * and where we expect X86_CR4_PGE to be set. Warn if we are called * without PGE set. */ WARN_ON_ONCE(!(cr4 & X86_CR4_PGE)); /* * Architecturally, any _change_ to X86_CR4_PGE will fully flush * all entries. Make sure that we _change_ the bit, regardless of * whether we had X86_CR4_PGE set in the first place. * * Note that just toggling PGE *also* flushes all entries from all * PCIDs, regardless of the state of X86_CR4_PCIDE. */ native_write_cr4(cr4 ^ X86_CR4_PGE); /* Put original CR4 value back: */ native_write_cr4(cr4); } static inline void __native_flush_tlb_global(void) { unsigned long flags; if (static_cpu_has(X86_FEATURE_INVPCID)) { /* * Using INVPCID is considerably faster than a pair of writes * to CR4 sandwiched inside an IRQ flag save/restore. * * Note, this works with CR4.PCIDE=0 or 1. */ invpcid_flush_all(); return; } /* * Read-modify-write to CR4 - protect it from preemption and * from interrupts. (Use the raw variant because this code can * be called from deep inside debugging code.) */ raw_local_irq_save(flags); __native_flush_tlb_global_irq_disabled(); raw_local_irq_restore(flags); } static inline void __native_flush_tlb_single(unsigned long addr) { #ifdef CONFIG_PAGE_TABLE_ISOLATION unsigned long cr3, shadow_cr3; /* Flush the address out of both PCIDs. */ /* * An optimization here might be to determine addresses * that are only kernel-mapped and only flush the kernel * ASID. But, userspace flushes are probably much more * important performance-wise. * * Make sure to do only a single invpcid when KAISER is * disabled and we have only a single ASID. */ if (static_cpu_has(X86_FEATURE_PCID) && kaiser_active()) { /* * Some platforms #GP if we call invpcid(type=1/2) before * CR4.PCIDE=1. Just call invpcid in the case we are called * early. */ if (this_cpu_has(X86_FEATURE_INVPCID_SINGLE)) { invpcid_flush_one(KAISER_SHADOW_PCID_ASID, addr); invpcid_flush_one(0, addr); return; } cr3 = native_read_cr3(); VM_WARN_ON(cr3 & KAISER_SHADOW_PCID_ASID); VM_WARN_ON(cr3 & (1<<KAISER_PGTABLE_SWITCH_BIT)); VM_WARN_ON(cr3 & X86_CR3_PCID_NOFLUSH); cr3 |= X86_CR3_PCID_NOFLUSH; shadow_cr3 = cr3 | (1<<KAISER_PGTABLE_SWITCH_BIT) | KAISER_SHADOW_PCID_ASID; asm volatile("\tjmp 1f\n\t" "2:\n\t" ".section .entry.text, \"ax\"\n\t" "1:\n\t" "pushf\n\t" "cli\n\t" "movq %0, %%cr3\n\t" "invlpg (%2)\n\t" "movq %1, %%cr3\n\t" "popf\n\t" "invlpg (%2)\n\t" "jmp 2b\n\t" ".previous" : : "r" (shadow_cr3), "r" (cr3), "r" (addr) : "memory"); } else #endif asm volatile("invlpg (%0)" ::"r" (addr) : "memory"); } static inline void __flush_tlb_all(void) { if (cpu_has_pge) __flush_tlb_global(); else __flush_tlb(); } static inline void __flush_tlb_one(unsigned long addr) { __flush_tlb_single(addr); } #define TLB_FLUSH_ALL -1UL /* * TLB flushing: * * - flush_tlb_all() flushes all processes TLBs * - flush_tlb_mm(mm) flushes the specified mm context TLB's * - flush_tlb_page(vma, vmaddr) flushes one page * - flush_tlb_range(vma, start, end) flushes a range of pages * - flush_tlb_kernel_range(start, end) flushes a range of kernel pages * - flush_tlb_others(cpumask, mm, start, end) flushes TLBs on other cpus * * ..but the i386 has somewhat limited tlb flushing capabilities, * and page-granular flushes are available only on i486 and up. */ #ifndef CONFIG_SMP #define flush_tlb() __flush_tlb() #define flush_tlb_all() __flush_tlb_all() #define local_flush_tlb() __flush_tlb() static inline void flush_tlb_mm(struct mm_struct *mm) { if (mm == current->active_mm) __flush_tlb(); } static inline void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr) { if (vma->vm_mm == current->active_mm) __flush_tlb_one(addr); } static inline void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (vma->vm_mm == current->active_mm) __flush_tlb(); } static inline void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag) { if (mm == current->active_mm) __flush_tlb(); } static inline void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end) { } static inline void reset_lazy_tlbstate(void) { } static inline void flush_tlb_kernel_range(unsigned long start, unsigned long end) { flush_tlb_all(); } #else /* SMP */ #include <asm/smp.h> #define local_flush_tlb() __flush_tlb() #define flush_tlb_mm(mm) flush_tlb_mm_range(mm, 0UL, TLB_FLUSH_ALL, 0UL) #define flush_tlb_range(vma, start, end) \ flush_tlb_mm_range(vma->vm_mm, start, end, vma->vm_flags) extern void flush_tlb_all(void); extern void flush_tlb_page(struct vm_area_struct *, unsigned long); extern void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long vmflag); extern void flush_tlb_kernel_range(unsigned long start, unsigned long end); void native_flush_tlb_others(const struct cpumask *cpumask, struct mm_struct *mm, unsigned long start, unsigned long end); #define TLBSTATE_OK 1 #define TLBSTATE_LAZY 2 struct tlb_state { struct mm_struct *active_mm; int state; }; DECLARE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate); static inline void reset_lazy_tlbstate(void) { this_cpu_write(cpu_tlbstate.state, 0); this_cpu_write(cpu_tlbstate.active_mm, &init_mm); } #endif /* SMP */ /* Not inlined due to inc_irq_stat not being defined yet */ #define flush_tlb_local() { \ inc_irq_stat(irq_tlb_count); \ local_flush_tlb(); \ } #ifndef CONFIG_PARAVIRT #define flush_tlb_others(mask, mm, start, end) \ native_flush_tlb_others(mask, mm, start, end) #endif #endif /* _ASM_X86_TLBFLUSH_H */