GIF89a;
Direktori : /lib/modules/3.10.0-1160.80.1.el7.centos.plus.x86_64/build/include/linux/ |
Current File : //lib/modules/3.10.0-1160.80.1.el7.centos.plus.x86_64/build/include/linux/blk-mq.h |
#ifndef BLK_MQ_H #define BLK_MQ_H #include <linux/blkdev.h> #include <linux/rh_kabi.h> #include <linux/sbitmap.h> struct blk_mq_tags; struct blk_flush_queue; struct blk_mq_cpu_notifier { struct list_head list; void *data; RH_KABI_REPLACE(void (*notify)(void *data, unsigned long action, unsigned int cpu), int (*notify)(void *data, unsigned long action, unsigned int cpu)) }; struct blk_mq_ctxmap { unsigned int size; unsigned int bits_per_word; struct blk_align_bitmap *map; }; struct blk_mq_hw_ctx { struct { spinlock_t lock; struct list_head dispatch; } ____cacheline_aligned_in_smp; unsigned long state; /* BLK_MQ_S_* flags */ RH_KABI_REPLACE(struct delayed_work delayed_work, struct delayed_work delay_work) unsigned long flags; /* BLK_MQ_F_* flags */ struct request_queue *queue; unsigned int queue_num; void *driver_data; unsigned int nr_ctx; struct blk_mq_ctx **ctxs; RH_KABI_REPLACE(unsigned int nr_ctx_map, atomic_t wait_index) RH_KABI_REPLACE(unsigned long *ctx_map, unsigned long *padding1) RH_KABI_REPLACE(struct request **rqs, struct request **padding2) RH_KABI_REPLACE(struct list_head page_list, struct list_head padding3) struct blk_mq_tags *tags; unsigned long queued; unsigned long run; #define BLK_MQ_MAX_DISPATCH_ORDER 10 unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; unsigned int queue_depth; /* DEPRECATED: RHEL kABI padding, repurpose? */ unsigned int numa_node; RH_KABI_DEPRECATE(unsigned int, cmd_size) struct blk_mq_cpu_notifier cpu_notifier; struct kobject kobj; RH_KABI_EXTEND(struct delayed_work run_work) RH_KABI_EXTEND(cpumask_var_t cpumask) RH_KABI_EXTEND(int next_cpu) RH_KABI_EXTEND(int next_cpu_batch) RH_KABI_EXTEND(struct sbitmap ctx_map) RH_KABI_EXTEND(atomic_t nr_active) RH_KABI_EXTEND(struct blk_flush_queue *fq) RH_KABI_EXTEND(struct srcu_struct queue_rq_srcu) RH_KABI_EXTEND(wait_queue_t dispatch_wait) RH_KABI_EXTEND(void *sched_data) RH_KABI_EXTEND(struct blk_mq_tags *sched_tags) RH_KABI_EXTEND(struct blk_mq_ctx *dispatch_from) #ifdef CONFIG_BLK_DEBUG_FS RH_KABI_EXTEND(struct dentry *debugfs_dir) RH_KABI_EXTEND(struct dentry *sched_debugfs_dir) #endif RH_KABI_EXTEND(int dispatch_busy) }; #ifdef __GENKSYMS__ struct blk_mq_reg { struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; /* max hw supported */ unsigned int reserved_tags; unsigned int cmd_size; /* per-request extra data */ int numa_node; unsigned int timeout; unsigned int flags; /* BLK_MQ_F_* */ }; #else struct blk_mq_tag_set { RH_KABI_CONST struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; /* max hw supported */ unsigned int reserved_tags; unsigned int cmd_size; /* per-request extra data */ int numa_node; unsigned int timeout; unsigned int flags; /* BLK_MQ_F_* */ void *driver_data; struct blk_mq_tags **tags; struct mutex tag_list_lock; struct list_head tag_list; unsigned int *mq_map; }; #endif struct blk_mq_queue_data { struct request *rq; struct list_head *list; bool last; }; /* * This structure is only for blk-mq and per request * for support some new blk-mq features, such as io * scheduler, blk-stat and so on. */ struct request_aux { int internal_tag; struct blk_issue_stat issue_stat; }; /* None of these function pointers are covered by RHEL kABI */ #ifdef __GENKSYMS__ typedef int (queue_rq_fn)(struct blk_mq_hw_ctx *, struct request *); #else typedef int (queue_rq_fn)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *); #endif typedef bool (get_budget_fn)(struct blk_mq_hw_ctx *); typedef void (put_budget_fn)(struct blk_mq_hw_ctx *); typedef struct blk_mq_hw_ctx *(map_queue_fn)(struct request_queue *, const int); #ifdef __GENKSYMS__ typedef struct blk_mq_hw_ctx *(alloc_hctx_fn)(struct blk_mq_reg *,unsigned int); typedef void (free_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int); #endif typedef enum blk_eh_timer_return (timeout_fn)(struct request *, bool); typedef int (init_hctx_fn)(struct blk_mq_hw_ctx *, void *, unsigned int); typedef void (exit_hctx_fn)(struct blk_mq_hw_ctx *, unsigned int); typedef int (init_request_fn)(struct blk_mq_tag_set *set, struct request *, unsigned int, unsigned int); typedef void (exit_request_fn)(struct blk_mq_tag_set *set, struct request *, unsigned int); typedef int (reinit_request_fn)(void *, struct request *); typedef void (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, bool); typedef void (busy_tag_iter_fn)(struct request *, void *, bool); typedef int (map_queues_fn)(struct blk_mq_tag_set *set); typedef void (cleanup_rq_fn)(struct request *); struct blk_mq_aux_ops { reinit_request_fn *reinit_request; map_queues_fn *map_queues; /* * Reserve budget before queue request, once .queue_rq is * run, it is driver's responsibility to release the * reserved budget. Also we have to handle failure case * of .get_budget for avoiding I/O deadlock. */ get_budget_fn *get_budget; put_budget_fn *put_budget; /* * Called before freeing one request which isn't completed yet, * and usually for freeing the driver private data */ cleanup_rq_fn *cleanup_rq; }; struct blk_mq_ops { /* * Queue request */ queue_rq_fn *queue_rq; /* * Map to specific hardware queue * * Reuse this pointer for aux ops. */ RH_KABI_REPLACE(map_queue_fn *map_queue, struct blk_mq_aux_ops *aux_ops) /* * Called on request timeout */ RH_KABI_REPLACE(rq_timed_out_fn *timeout, timeout_fn *timeout) softirq_done_fn *complete; #ifdef __GENKSYMS__ /* * Override for hctx allocations (should probably go) * DEPRECATED: needed to preserve kABI. */ alloc_hctx_fn *alloc_hctx; free_hctx_fn *free_hctx; #else /* * Called for every command allocated by the block layer to allow * the driver to set up driver specific data. * * Tag greater than or equal to queue_depth is for setting up * flush request. * * Ditto for exit/teardown. */ init_request_fn *init_request; exit_request_fn *exit_request; #endif /* * Called when the block layer side of a hardware queue has been * set up, allowing the driver to allocate/init matching structures. * Ditto for exit/teardown. */ init_hctx_fn *init_hctx; exit_hctx_fn *exit_hctx; }; enum { BLK_MQ_RQ_QUEUE_OK = 0, /* queued fine */ BLK_MQ_RQ_QUEUE_BUSY = 1, /* requeue IO for later */ BLK_MQ_RQ_QUEUE_ERROR = 2, /* end IO with error */ /* * BLK_MQ_RQ_QUEUE_DEV_BUSY is returned from the driver to the block layer if * device related resources are unavailable, but the driver can guarantee * that the queue will be rerun in the future once resources become * available again. This is typically the case for device specific * resources that are consumed for IO. If the driver fails allocating these * resources, we know that inflight (or pending) IO will free these * resource upon completion. * * This is different from BLK_MQ_RQ_QUEUE_BUSY in that it explicitly references * a device specific resource. For resources of wider scope, allocation * failure can happen without having pending IO. This means that we can't * rely on request completions freeing these resources, as IO may not be in * flight. Examples of that are kernel memory allocations, DMA mappings, or * any other system wide resources. */ BLK_MQ_RQ_QUEUE_DEV_BUSY = 3, BLK_MQ_F_SHOULD_MERGE = 1 << 0, BLK_MQ_F_SHOULD_SORT = 1 << 1, BLK_MQ_F_TAG_SHARED = 1 << 2, BLK_MQ_F_SG_MERGE = 1 << 3, BLK_MQ_F_TAG_LOCKED = 1 << 4, BLK_MQ_F_BLOCKING = 1 << 6, BLK_MQ_F_NO_SCHED = 1 << 7, BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, BLK_MQ_F_ALLOC_POLICY_BITS = 1, BLK_MQ_S_STOPPED = 0, BLK_MQ_S_TAG_ACTIVE = 1, BLK_MQ_S_SCHED_RESTART = 2, BLK_MQ_MAX_DEPTH = 10240, BLK_MQ_CPU_WORK_BATCH = 8, }; #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ << BLK_MQ_F_ALLOC_POLICY_START_BIT) struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q); int blk_mq_register_dev(struct device *, struct request_queue *); void blk_mq_unregister_dev(struct device *, struct request_queue *); int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); void blk_mq_free_tag_set(struct blk_mq_tag_set *set); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_free_request(struct request *rq); bool blk_mq_can_queue(struct blk_mq_hw_ctx *); enum { BLK_MQ_REQ_NOWAIT = (1 << 0), /* return when out of requests */ BLK_MQ_REQ_RESERVED = (1 << 1), /* allocate from reserved pool */ BLK_MQ_REQ_INTERNAL = (1 << 2), /* allocate internal/sched tag */ BLK_MQ_REQ_PREEMPT = (1 << 3), /* set RQF_PREEMPT */ }; struct request *blk_mq_alloc_request(struct request_queue *q, int rw, unsigned int flags); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int op, unsigned int flags, unsigned int hctx_idx); struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); enum { BLK_MQ_UNIQUE_TAG_BITS = 16, BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, }; u32 blk_mq_unique_tag(struct request *rq); static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) { return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; } static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) { return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; } struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *, unsigned int, int); void blk_mq_clear_rq_complete(struct request *rq); int blk_mq_request_started(struct request *rq); int blk_mq_request_completed(struct request *rq); void blk_mq_start_request(struct request *rq); void blk_mq_end_request(struct request *rq, int error); void __blk_mq_end_request(struct request *rq, int error); void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, bool kick_requeue_list); void blk_mq_kick_requeue_list(struct request_queue *q); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); void blk_mq_complete_request(struct request *rq, int error); bool blk_mq_queue_stopped(struct request_queue *q); void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_stop_hw_queues(struct request_queue *q); void blk_mq_start_hw_queues(struct request_queue *q); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); void blk_mq_quiesce_queue(struct request_queue *q); void blk_mq_unquiesce_queue(struct request_queue *q); void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_run_hw_queues(struct request_queue *q, bool async); void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv); void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); void blk_mq_freeze_queue(struct request_queue *q); void blk_mq_unfreeze_queue(struct request_queue *q); void blk_freeze_queue_start(struct request_queue *q); void blk_mq_freeze_queue_wait(struct request_queue *q); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout); int blk_mq_reinit_tagset(struct blk_mq_tag_set *set); void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); void blk_mq_quiesce_queue_nowait(struct request_queue *q); /* * Driver command data is immediately after the request. So subtract request * size to get back to the original request. */ static inline struct request *blk_mq_rq_from_pdu(void *pdu) { return pdu - sizeof(struct request); } static inline void *blk_mq_rq_to_pdu(struct request *rq) { return (void *) rq + sizeof(*rq); } static inline struct request_aux *__rq_aux(struct request *rq, struct request_queue *q) { BUG_ON(!q->mq_ops); return (void *) rq + sizeof(*rq) + q->tag_set->cmd_size; } static inline struct request_aux *rq_aux(struct request *rq) { return __rq_aux(rq, rq->q); } #define queue_for_each_hw_ctx(q, hctx, i) \ for ((i) = 0; (i) < (q)->nr_hw_queues && \ ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) #define hctx_for_each_ctx(hctx, ctx, i) \ for ((i) = 0; (i) < (hctx)->nr_ctx && \ ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) static inline void blk_mq_cleanup_rq(struct request *rq) { struct request_queue *q = rq->q; if (q->mq_ops->aux_ops && q->mq_ops->aux_ops->cleanup_rq) q->mq_ops->aux_ops->cleanup_rq(rq); } #endif