GIF89a;
Direktori : /lib/modules/3.10.0-1160.80.1.el7.centos.plus.x86_64/build/include/asm-generic/ |
Current File : //lib/modules/3.10.0-1160.80.1.el7.centos.plus.x86_64/build/include/asm-generic/pgtable.h |
#ifndef _ASM_GENERIC_PGTABLE_H #define _ASM_GENERIC_PGTABLE_H #include <linux/pfn.h> #ifndef __ASSEMBLY__ #ifdef CONFIG_MMU #include <linux/mm_types.h> #include <linux/bug.h> #include <linux/errno.h> /* * On almost all architectures and configurations, 0 can be used as the * upper ceiling to free_pgtables(): on many architectures it has the same * effect as using TASK_SIZE. However, there is one configuration which * must impose a more careful limit, to avoid freeing kernel pgtables. */ #ifndef USER_PGTABLES_CEILING #define USER_PGTABLES_CEILING 0UL #endif #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS extern int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pud_t *pudp, pud_t entry, int dirty); #endif #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; int r = 1; if (!pte_young(pte)) r = 0; else set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); return r; } #endif #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; int r = 1; if (!pmd_young(pmd)) r = 0; else set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); return r; } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t pte = *ptep; pte_clear(mm, address, ptep); return pte; } #endif #ifdef CONFIG_TRANSPARENT_HUGEPAGE #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd_clear(pmdp); return pmd; } #endif /* __HAVE_ARCH_PMDP_GET_AND_CLEAR */ #ifndef __HAVE_ARCH_PUDP_GET_AND_CLEAR static inline pud_t pudp_get_and_clear(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t pud = *pudp; pud_clear(pudp); return pud; } #endif /* __HAVE_ARCH_PUDP_GET_AND_CLEAR */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_t pte; pte = ptep_get_and_clear(mm, address, ptep); return pte; } #endif /* * Some architectures may be able to avoid expensive synchronization * primitives when modifications are made to PTE's which are already * not present, or in the process of an address space destruction. */ #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL static inline void pte_clear_not_present_full(struct mm_struct *mm, unsigned long address, pte_t *ptep, int full) { pte_clear(mm, address, ptep); } #endif #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH extern pte_t ptep_clear_flush(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #endif #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PUDP_CLEAR_FLUSH extern pud_t pudp_clear_flush(struct vm_area_struct *vma, unsigned long address, pud_t *pudp); #endif #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT struct mm_struct; static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) { pte_t old_pte = *ptep; set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); } #endif #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { pmd_t old_pmd = *pmdp; set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long address, pmd_t *pmdp) { BUG(); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { pud_t old_pud = *pudp; set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); } #else static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long address, pud_t *pudp) { BUILD_BUG(); } #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ #endif #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH extern void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); #endif #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PMDP_INVALIDATE extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #endif #ifndef __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { return pte_val(pte_a) == pte_val(pte_b); } #endif #ifndef __HAVE_ARCH_PMD_SAME #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return pmd_val(pmd_a) == pmd_val(pmd_b); } static inline int pud_same(pud_t pud_a, pud_t pud_b) { return pud_val(pud_a) == pud_val(pud_b); } #else /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { BUILD_BUG(); return 0; } static inline int pud_same(pud_t pud_a, pud_t pud_b) { BUILD_BUG(); return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #endif #ifndef __HAVE_ARCH_PGD_OFFSET_GATE #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) #endif #ifndef __HAVE_ARCH_MOVE_PTE #define move_pte(pte, prot, old_addr, new_addr) (pte) #endif #ifndef pte_accessible # define pte_accessible(mm, pte) ((void)(pte), 1) #endif #ifndef flush_tlb_fix_spurious_fault #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) #endif #ifndef pgprot_noncached #define pgprot_noncached(prot) (prot) #endif #ifndef pgprot_writecombine #define pgprot_writecombine pgprot_noncached #endif #ifndef pgprot_device #define pgprot_device pgprot_noncached #endif #ifndef pgprot_modify #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) newprot = pgprot_noncached(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) newprot = pgprot_writecombine(newprot); if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) newprot = pgprot_device(newprot); return newprot; } #endif /* * When walking page tables, get the address of the next boundary, * or the end address of the range if that comes earlier. Although no * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. */ #define pgd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #ifndef pud_addr_end #define pud_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif #ifndef pmd_addr_end #define pmd_addr_end(addr, end) \ ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ (__boundary - 1 < (end) - 1)? __boundary: (end); \ }) #endif /* * When walking page tables, we usually want to skip any p?d_none entries; * and any p?d_bad entries - reporting the error before resetting to none. * Do the tests inline, but report and clear the bad entry in mm/memory.c. */ void pgd_clear_bad(pgd_t *); void pud_clear_bad(pud_t *); void pmd_clear_bad(pmd_t *); static inline int pgd_none_or_clear_bad(pgd_t *pgd) { if (pgd_none(*pgd)) return 1; if (unlikely(pgd_bad(*pgd))) { pgd_clear_bad(pgd); return 1; } return 0; } static inline int pud_none_or_clear_bad(pud_t *pud) { if (pud_none(*pud)) return 1; if (unlikely(pud_bad(*pud))) { pud_clear_bad(pud); return 1; } return 0; } static inline int pmd_none_or_clear_bad(pmd_t *pmd) { if (pmd_none(*pmd)) return 1; if (unlikely(pmd_bad(*pmd))) { pmd_clear_bad(pmd); return 1; } return 0; } static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { /* * Get the current pte state, but zero it out to make it * non-present, preventing the hardware from asynchronously * updating it. */ return ptep_get_and_clear(mm, addr, ptep); } static inline void __ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { /* * The pte is non-present, so there's no hardware state to * preserve. */ set_pte_at(mm, addr, ptep, pte); } #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION /* * Start a pte protection read-modify-write transaction, which * protects against asynchronous hardware modifications to the pte. * The intention is not to prevent the hardware from making pte * updates, but to prevent any updates it may make from being lost. * * This does not protect against other software modifications of the * pte; the appropriate pte lock must be held over the transation. * * Note that this interface is intended to be batchable, meaning that * ptep_modify_prot_commit may not actually update the pte, but merely * queue the update to be done at some later time. The update must be * actually committed before the pte lock is released, however. */ static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return __ptep_modify_prot_start(mm, addr, ptep); } /* * Commit an update to a pte, leaving any hardware-controlled bits in * the PTE unmodified. */ static inline void ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte) { __ptep_modify_prot_commit(mm, addr, ptep, pte); } #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ #endif /* CONFIG_MMU */ /* * No-op macros that just return the current protection value. Defined here * because these macros can be used used even if CONFIG_MMU is not defined. */ #ifndef pgprot_encrypted #define pgprot_encrypted(prot) (prot) #endif #ifndef pgprot_decrypted #define pgprot_decrypted(prot) (prot) #endif /* * A facility to provide lazy MMU batching. This allows PTE updates and * page invalidations to be delayed until a call to leave lazy MMU mode * is issued. Some architectures may benefit from doing this, and it is * beneficial for both shadow and direct mode hypervisors, which may batch * the PTE updates which happen during this window. Note that using this * interface requires that read hazards be removed from the code. A read * hazard could result in the direct mode hypervisor case, since the actual * write to the page tables may not yet have taken place, so reads though * a raw PTE pointer after it has been modified are not guaranteed to be * up to date. This mode can only be entered and left under the protection of * the page table locks for all page tables which may be modified. In the UP * case, this is required so that preemption is disabled, and in the SMP case, * it must synchronize the delayed page table writes properly on other CPUs. */ #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE #define arch_enter_lazy_mmu_mode() do {} while (0) #define arch_leave_lazy_mmu_mode() do {} while (0) #define arch_flush_lazy_mmu_mode() do {} while (0) #endif /* * A facility to provide batching of the reload of page tables and * other process state with the actual context switch code for * paravirtualized guests. By convention, only one of the batched * update (lazy) modes (CPU, MMU) should be active at any given time, * entry should never be nested, and entry and exits should always be * paired. This is for sanity of maintaining and reasoning about the * kernel code. In this case, the exit (end of the context switch) is * in architecture-specific code, and so doesn't need a generic * definition. */ #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH #define arch_start_context_switch(prev) do {} while (0) #endif #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline int pte_soft_dirty(pte_t pte) { return 0; } static inline int pmd_soft_dirty(pmd_t pmd) { return 0; } static inline pte_t pte_mksoft_dirty(pte_t pte) { return pte; } static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) { return pmd; } static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_swp_soft_dirty(pte_t pte) { return 0; } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return pte; } static inline pte_t pte_file_clear_soft_dirty(pte_t pte) { return pte; } static inline pte_t pte_file_mksoft_dirty(pte_t pte) { return pte; } static inline int pte_file_soft_dirty(pte_t pte) { return 0; } #endif #ifndef __HAVE_PFNMAP_TRACKING /* * Interfaces that can be used by architecture code to keep track of * memory type of pfn mappings specified by the remap_pfn_range, * vm_insert_pfn. */ /* * track_pfn_remap is called when a _new_ pfn mapping is being established * by remap_pfn_range() for physical range indicated by pfn and size. */ static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size) { return 0; } /* * track_pfn_insert is called when a _new_ single pfn is established * by vm_insert_pfn(). */ static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn) { return 0; } /* * track_pfn_copy is called when vma that is covering the pfnmap gets * copied through copy_page_range(). */ static inline int track_pfn_copy(struct vm_area_struct *vma) { return 0; } /* * untrack_pfn is called while unmapping a pfnmap for a region. * untrack can be called for a specific region indicated by pfn and size or * can be for the entire vma (in which case pfn, size are zero). */ static inline void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size) { } /* * untrack_pfn_moved is called while mremapping a pfnmap for a new region. */ static inline void untrack_pfn_moved(struct vm_area_struct *vma) { } #else extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, unsigned long pfn, unsigned long addr, unsigned long size); extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn); extern int track_pfn_copy(struct vm_area_struct *vma); extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, unsigned long size); extern void untrack_pfn_moved(struct vm_area_struct *vma); #endif #ifdef __HAVE_COLOR_ZERO_PAGE static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; unsigned long offset_from_zero_pfn = pfn - zero_pfn; return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); } #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) #else static inline int is_zero_pfn(unsigned long pfn) { extern unsigned long zero_pfn; return pfn == zero_pfn; } static inline unsigned long my_zero_pfn(unsigned long addr) { extern unsigned long zero_pfn; return zero_pfn; } #endif #ifdef CONFIG_MMU #ifndef CONFIG_TRANSPARENT_HUGEPAGE static inline int pmd_trans_huge(pmd_t pmd) { return 0; } static inline int pmd_trans_splitting(pmd_t pmd) { return 0; } static inline int pud_trans_huge(pud_t pud) { return 0; } static inline int pud_trans_splitting(pud_t pud) { return 0; } #ifndef __HAVE_ARCH_PMD_WRITE static inline int pmd_write(pmd_t pmd) { BUG(); return 0; } #endif /* __HAVE_ARCH_PMD_WRITE */ #ifndef __HAVE_ARCH_PUD_WRITE static inline int pud_write(pud_t pud) { BUG(); return 0; } #endif /* __HAVE_ARCH_PUD_WRITE */ #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) static inline int pud_trans_huge(pud_t pud) { return 0; } #endif #ifndef pmd_read_atomic static inline pmd_t pmd_read_atomic(pmd_t *pmdp) { /* * Depend on compiler for an atomic pmd read. NOTE: this is * only going to work, if the pmdval_t isn't larger than * an unsigned long. */ return *pmdp; } #endif #ifndef pmd_move_must_withdraw static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, spinlock_t *old_pmd_ptl) { /* * With split pmd lock we also need to move preallocated * PTE page table if new_pmd is on different PMD page table. */ return new_pmd_ptl != old_pmd_ptl; } #endif /* * This function is meant to be used by sites walking pagetables with * the mmap_sem hold in read mode to protect against MADV_DONTNEED and * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd * into a null pmd and the transhuge page fault can convert a null pmd * into an hugepmd or into a regular pmd (if the hugepage allocation * fails). While holding the mmap_sem in read mode the pmd becomes * stable and stops changing under us only if it's not null and not a * transhuge pmd. When those races occurs and this function makes a * difference vs the standard pmd_none_or_clear_bad, the result is * undefined so behaving like if the pmd was none is safe (because it * can return none anyway). The compiler level barrier() is critically * important to compute the two checks atomically on the same pmdval. * * For 32bit kernels with a 64bit large pmd_t this automatically takes * care of reading the pmd atomically to avoid SMP race conditions * against pmd_populate() when the mmap_sem is hold for reading by the * caller (a special atomic read not done by "gcc" as in the generic * version above, is also needed when THP is disabled because the page * fault can populate the pmd from under us). */ static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) { pmd_t pmdval = pmd_read_atomic(pmd); /* * The barrier will stabilize the pmdval in a register or on * the stack so that it will stop changing under the code. * * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, * pmd_read_atomic is allowed to return a not atomic pmdval * (for example pointing to an hugepage that has never been * mapped in the pmd). The below checks will only care about * the low part of the pmd with 32bit PAE x86 anyway, with the * exception of pmd_none(). So the important thing is that if * the low part of the pmd is found null, the high part will * be also null or the pmd_none() check below would be * confused. */ #ifdef CONFIG_TRANSPARENT_HUGEPAGE barrier(); #endif if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) return 1; if (unlikely(pmd_bad(pmdval))) { pmd_clear_bad(pmd); return 1; } return 0; } /* * This is a noop if Transparent Hugepage Support is not built into * the kernel. Otherwise it is equivalent to * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in * places that already verified the pmd is not none and they want to * walk ptes while holding the mmap sem in read mode (write mode don't * need this). If THP is not enabled, the pmd can't go away under the * code even if MADV_DONTNEED runs, but if THP is enabled we need to * run a pmd_trans_unstable before walking the ptes after * split_huge_page_pmd returns (because it may have run when the pmd * become null, but then a page fault can map in a THP and not a * regular page). */ static inline int pmd_trans_unstable(pmd_t *pmd) { #ifdef CONFIG_TRANSPARENT_HUGEPAGE return pmd_none_or_trans_huge_or_clear_bad(pmd); #else return 0; #endif } #ifdef CONFIG_NUMA_BALANCING #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE /* * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the * same bit too). It's set only when _PAGE_PRESET is not set and it's * never set if _PAGE_PRESENT is set. * * pte/pmd_present() returns true if pte/pmd_numa returns true. Page * fault triggers on those regions if pte/pmd_numa returns true * (because _PAGE_PRESENT is not set). */ #ifndef pte_numa static inline int pte_numa(pte_t pte) { return (pte_flags(pte) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; } #endif #ifndef pmd_numa static inline int pmd_numa(pmd_t pmd) { return (pmd_flags(pmd) & (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA; } #endif /* * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically * because they're called by the NUMA hinting minor page fault. If we * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler * would be forced to set it later while filling the TLB after we * return to userland. That would trigger a second write to memory * that we optimize away by setting _PAGE_ACCESSED here. */ #ifndef pte_mknonnuma static inline pte_t pte_mknonnuma(pte_t pte) { pteval_t val = pte_val(pte); val &= ~_PAGE_NUMA; val |= (_PAGE_PRESENT|_PAGE_ACCESSED); return __pte(val); } #endif #ifndef pmd_mknonnuma static inline pmd_t pmd_mknonnuma(pmd_t pmd) { pmdval_t val = pmd_val(pmd); val &= ~_PAGE_NUMA; val |= (_PAGE_PRESENT|_PAGE_ACCESSED); return __pmd(val); } #endif #ifndef pte_mknuma static inline pte_t pte_mknuma(pte_t pte) { pteval_t val = pte_val(pte); val &= ~_PAGE_PRESENT; val |= _PAGE_NUMA; return __pte(val); } #endif #ifndef ptep_set_numa static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t ptent = *ptep; ptent = pte_mknuma(ptent); set_pte_at(mm, addr, ptep, ptent); return; } #endif #ifndef pmd_mknuma static inline pmd_t pmd_mknuma(pmd_t pmd) { pmdval_t val = pmd_val(pmd); val &= ~_PAGE_PRESENT; val |= _PAGE_NUMA; return __pmd(val); } #endif #ifndef pmdp_set_numa static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { pmd_t pmd = *pmdp; pmd = pmd_mknuma(pmd); set_pmd_at(mm, addr, pmdp, pmd); return; } #endif #else extern int pte_numa(pte_t pte); extern int pmd_numa(pmd_t pmd); extern pte_t pte_mknonnuma(pte_t pte); extern pmd_t pmd_mknonnuma(pmd_t pmd); extern pte_t pte_mknuma(pte_t pte); extern pmd_t pmd_mknuma(pmd_t pmd); extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep); extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ #else static inline int pmd_numa(pmd_t pmd) { return 0; } static inline int pte_numa(pte_t pte) { return 0; } static inline pte_t pte_mknonnuma(pte_t pte) { return pte; } static inline pmd_t pmd_mknonnuma(pmd_t pmd) { return pmd; } static inline pte_t pte_mknuma(pte_t pte) { return pte; } static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return; } static inline pmd_t pmd_mknuma(pmd_t pmd) { return pmd; } static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { return ; } #endif /* CONFIG_NUMA_BALANCING */ #endif /* CONFIG_MMU */ #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); int pud_clear_huge(pud_t *pud); int pmd_clear_huge(pmd_t *pmd); #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) { return 0; } static inline int pud_clear_huge(pud_t *pud) { return 0; } static inline int pmd_clear_huge(pmd_t *pmd) { return 0; } #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) { return true; } static inline bool arch_has_pfn_modify_check(void) { return false; } #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ #endif /* !__ASSEMBLY__ */ #endif /* _ASM_GENERIC_PGTABLE_H */